論文の概要: Do Multimodal Large Language Models See Like Humans?
- arxiv url: http://arxiv.org/abs/2412.09603v1
- Date: Thu, 12 Dec 2024 18:59:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-13 13:32:10.523774
- Title: Do Multimodal Large Language Models See Like Humans?
- Title(参考訳): マルチモーダルな大言語モデルは人間に見えますか?
- Authors: Jiaying Lin, Shuquan Ye, Rynson W. H. Lau,
- Abstract要約: MLLM(Multimodal Large Language Models)は、様々なビジョンタスクにおいて、近年の大規模言語モデルの進歩を生かして、印象的な成果を上げている。
MLLMは人間と同じような視覚情報を知覚しているか?
HVSBenchは、人間の視覚を反映する基本的な視覚タスクにおいて、MLLMと人間の視覚システム(HVS)の整合性を評価するために設計された大規模なベンチマークである。
- 参考スコア(独自算出の注目度): 50.938168841711445
- License:
- Abstract: Multimodal Large Language Models (MLLMs) have achieved impressive results on various vision tasks, leveraging recent advancements in large language models. However, a critical question remains unaddressed: do MLLMs perceive visual information similarly to humans? Current benchmarks lack the ability to evaluate MLLMs from this perspective. To address this challenge, we introduce HVSBench, a large-scale benchmark designed to assess the alignment between MLLMs and the human visual system (HVS) on fundamental vision tasks that mirror human vision. HVSBench curated over 85K multimodal samples, spanning 13 categories and 5 fields in HVS, including Prominence, Subitizing, Prioritizing, Free-Viewing, and Searching. Extensive experiments demonstrate the effectiveness of our benchmark in providing a comprehensive evaluation of MLLMs. Specifically, we evaluate 13 MLLMs, revealing that even the best models show significant room for improvement, with most achieving only moderate results. Our experiments reveal that HVSBench presents a new and significant challenge for cutting-edge MLLMs. We believe that HVSBench will facilitate research on human-aligned and explainable MLLMs, marking a key step in understanding how MLLMs perceive and process visual information.
- Abstract(参考訳): MLLM(Multimodal Large Language Models)は、様々なビジョンタスクにおいて、近年の大規模言語モデルの進歩を活用して、印象的な成果を上げている。
MLLMは人間と同じような視覚情報を認識しているのか?
現在のベンチマークでは、この観点からMLLMを評価する能力がない。
この課題に対処するために,人間の視覚を反映した基本的な視覚タスクにおいて,MLLMと人間の視覚システム(HVS)のアライメントを評価するために設計された大規模ベンチマークであるHVSBenchを紹介する。
HVSBenchは85K以上のマルチモーダルサンプルをキュレートし、Prominence, Subitizing, Prioritizing, Free-Viewing, Searchingを含む13のカテゴリと5のフィールドにまたがった。
大規模な実験により,MLLMの総合的な評価を行う上で,ベンチマークの有効性が示された。
具体的には,13個のMLLMを評価し,最高のモデルであっても改善の余地があり,そのほとんどは適度な結果しか得られないことを示した。
実験の結果,HVSBenchは最先端MLLMに新たな,重要な課題をもたらすことがわかった。
HVSBenchはヒューマンアライメントと説明可能なMLLMの研究を促進し、MLLMが視覚情報をどう認識し処理するかを理解するための重要なステップとなると信じている。
関連論文リスト
- EmbodiedEval: Evaluate Multimodal LLMs as Embodied Agents [57.4686961979566]
EmbodiedEvalは、組み込みタスクを持つMLLMの総合的かつインタラクティブな評価ベンチマークである。
多様性が大幅に向上した既存のAIタスクの幅広い範囲をカバーする。
EmbodiedEval における最先端MLLM の評価を行い,人体作業における人体レベルと比較して有意に不足していることがわかった。
論文 参考訳(メタデータ) (2025-01-21T03:22:10Z) - OLA-VLM: Elevating Visual Perception in Multimodal LLMs with Auxiliary Embedding Distillation [95.78870389271832]
現代のMLLMを開発するための標準的な慣行は、視覚エンコーダ(s)からLLMに特徴を供給し、自然言語を監督する訓練を行うことである。
目的とする視覚表現の集合からLLMの隠れ表現に知識を抽出する最初の手法であるOLA-VLMを提案する。
OLA-VLMは様々なベンチマークで平均マージンを2.5%向上させ,CV-BenchのDepthタスクでは8.7%向上した。
論文 参考訳(メタデータ) (2024-12-12T18:55:18Z) - A Survey on Benchmarks of Multimodal Large Language Models [65.87641718350639]
本稿では,Multimodal Large Language Models (MLLM) のベンチマークと評価について概説する。
本研究では,(1)知覚と理解,(2)認知と推論,(3)特定のドメイン,(4)キー能力,(5)他のモダリティに着目した。
我々のキーとなる主張は、MLLMの開発をより良いものにするための重要な規律として評価されるべきである、ということである。
論文 参考訳(メタデータ) (2024-08-16T09:52:02Z) - Visualization Literacy of Multimodal Large Language Models: A Comparative Study [12.367399155606162]
MLLM(Multimodal large language model)は、MLLM(Multimodal large language model)とLLM(LLM)の固有の能力を組み合わせて、マルチモーダルコンテキストを推論する。
ビジュアライゼーションにおける最近の多くの研究は、可視化結果を理解し、解釈し、自然言語のユーザに対して視覚化の内容を説明するMLLMの能力を実証している。
本研究では,可視化リテラシーの概念を利用してMLLMを評価することにより,そのギャップを埋めることを目的とする。
論文 参考訳(メタデータ) (2024-06-24T17:52:16Z) - LM4LV: A Frozen Large Language Model for Low-level Vision Tasks [25.3601306724822]
$textbfLM4LV$は、大規模な言語モデルで、マルチモーダルデータや事前データなしで、さまざまな低レベルの視覚タスクを解決できるフレームワークである。
これは低レベルのビジョンにおけるLLMの強い可能性を示し、MLLMと低レベルのビジョンタスクの間のギャップを埋める。
論文 参考訳(メタデータ) (2024-05-24T17:25:00Z) - MLLM-as-a-Judge: Assessing Multimodal LLM-as-a-Judge with Vision-Language Benchmark [41.68821233828375]
本稿では,MLLM-as-a-Judgeと呼ばれる新しいベンチマークを導入し,多様なモダリティにまたがる審査員を支援するMLLMの能力を評価する。
本研究は, MLLMがPair Comparisonにおいて顕著な人間ライクな識別を示す一方で, Scoring EvaluationとBatch Rankingにおいて, 人間の嗜好とは大きく異なることを明らかにした。
論文 参考訳(メタデータ) (2024-02-07T12:28:32Z) - The Instinctive Bias: Spurious Images lead to Illusion in MLLMs [34.91795817316696]
MLLMは、非常に関連性が高いが、応答に矛盾する画像で構成されている。
本稿では,スプリアス画像の視覚錯視レベルを評価する最初のベンチマークである相関QAを提案する。
我々は9つの主流MLLMについて徹底的な分析を行い、これらの本能バイアスが様々な程度に普遍的に悩まされていることを指摘した。
論文 参考訳(メタデータ) (2024-02-06T06:48:46Z) - SEED-Bench-2: Benchmarking Multimodal Large Language Models [67.28089415198338]
MLLM(Multimodal large language model)は、最近、テキストだけでなく、インターリーブされたマルチモーダル入力の画像を生成できることを実証した。
SEED-Bench-2は、正確な人間のアノテーションを持つ24Kの多重選択質問で構成されており、27次元にまたがっている。
我々は,23個の著名なオープンソースMLLMの性能を評価し,貴重な観察結果を要約した。
論文 参考訳(メタデータ) (2023-11-28T05:53:55Z) - From CLIP to DINO: Visual Encoders Shout in Multi-modal Large Language
Models [36.41816380074965]
大規模言語モデル(MLLM)における視覚エンコーダの有効性について検討する。
以上の結果から,CLIPの浅層構造は,接地や領域理解といったきめ細かいタスクに特に有利であることがわかった。
我々は,CLIPとDINOをMergingと統合したシンプルな機能統合戦略であるCOMMを提案する。
論文 参考訳(メタデータ) (2023-10-13T02:41:55Z) - Q-Bench: A Benchmark for General-Purpose Foundation Models on Low-level
Vision [85.6008224440157]
MLLM(Multi-modality Large Language Models)は、コンピュータビジョンの特殊モデルから汎用基礎モデルへのシフトを触媒している。
Q-Benchは3つの領域(低レベル視覚知覚、低レベル視覚記述、全体視品質評価)でMLLMの潜在能力を評価するための総合的なベンチマークである。
論文 参考訳(メタデータ) (2023-09-25T14:43:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。