論文の概要: AgentTrek: Agent Trajectory Synthesis via Guiding Replay with Web Tutorials
- arxiv url: http://arxiv.org/abs/2412.09605v1
- Date: Thu, 12 Dec 2024 18:59:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-13 15:57:57.481801
- Title: AgentTrek: Agent Trajectory Synthesis via Guiding Replay with Web Tutorials
- Title(参考訳): AgentTrek: Webチュートリアルによるリプレイ誘導によるエージェント軌道合成
- Authors: Yiheng Xu, Dunjie Lu, Zhennan Shen, Junli Wang, Zekun Wang, Yuchen Mao, Caiming Xiong, Tao Yu,
- Abstract要約: Webチュートリアルを利用して高品質なGUIエージェントトラジェクトリを生成するスケーラブルなデータ合成パイプラインを提案する。
提案手法では,インターネットからチュートリアル的なテキストを自動的に収集し,ステップバイステップでタスク目標に変換し,視覚言語モデルエージェントを用いる。
VLMに基づく評価器は、生成された軌道の正確性を保証する。
- 参考スコア(独自算出の注目度): 53.376263056033046
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Graphical User Interface (GUI) agents hold great potential for automating complex tasks across diverse digital environments, from web applications to desktop software. However, the development of such agents is hindered by the lack of high-quality, multi-step trajectory data required for effective training. Existing approaches rely on expensive and labor-intensive human annotation, making them unsustainable at scale. To address this challenge, we propose AgentTrek, a scalable data synthesis pipeline that generates high-quality GUI agent trajectories by leveraging web tutorials. Our method automatically gathers tutorial-like texts from the internet, transforms them into task goals with step-by-step instructions, and employs a visual-language model agent to simulate their execution in a real digital environment. A VLM-based evaluator ensures the correctness of the generated trajectories. We demonstrate that training GUI agents with these synthesized trajectories significantly improves their grounding and planning performance over the current models. Moreover, our approach is more cost-efficient compared to traditional human annotation methods. This work underscores the potential of guided replay with web tutorials as a viable strategy for large-scale GUI agent training, paving the way for more capable and autonomous digital agents.
- Abstract(参考訳): グラフィカルユーザインタフェース(GUI)エージェントは、Webアプリケーションからデスクトップソフトウェアまで、様々なデジタル環境における複雑なタスクを自動化する大きな可能性を秘めています。
しかし、このようなエージェントの開発は、効果的な訓練に必要な高品質で多段階の軌道データの欠如によって妨げられている。
既存のアプローチは、高価で労働集約的な人間のアノテーションに依存しており、大規模には持続不可能である。
この課題に対処するために、Webチュートリアルを活用して高品質なGUIエージェントトラジェクトリを生成するスケーラブルなデータ合成パイプラインであるAgentTrekを提案する。
提案手法では,インターネットからチュートリアル的なテキストを自動的に収集し,ステップバイステップの指示でタスク目標に変換し,ビジュアル言語モデルエージェントを用いて実際のディジタル環境での実行をシミュレートする。
VLMに基づく評価器は、生成された軌道の正確性を保証する。
我々は,これらの合成軌道を用いたGUIエージェントの訓練が,現行モデルよりもグラウンド化および計画性能を著しく向上させることを示した。
さらに,本手法は従来の人間のアノテーション手法よりもコスト効率が高い。
この研究は、大規模GUIエージェントトレーニングのための実行可能な戦略として、Webチュートリアルによるガイド付きリプレイの可能性を強調し、より有能で自律的なデジタルエージェントへの道を開く。
関連論文リスト
- STEVE: A Step Verification Pipeline for Computer-use Agent Training [84.24814828303163]
STEVEは、コンピュータ使用エージェントトレーニングのためのステップ検証パイプラインである。
GPT-4oは、動作実行前後の画面に基づいて、軌跡の各ステップの正当性を検証するために使用される。
我々のエージェントは、軌道内での正と負の両方の作用を利用して微調整を監督する。
論文 参考訳(メタデータ) (2025-03-16T14:53:43Z) - OS-Genesis: Automating GUI Agent Trajectory Construction via Reverse Task Synthesis [55.390060529534644]
グラフィカルユーザインタフェース(GUI)エージェントのための新しいデータ合成パイプラインであるOS-Genesisを提案する。
事前に定義されたタスクに頼る代わりに、OS-Genesisはエージェントがまず環境を認識し、ステップワイドなインタラクションを実行することを可能にする。
我々は,OS-Genesisを用いたGUIエージェントのトレーニングにより,高度に挑戦するオンラインベンチマークの性能が大幅に向上することが実証された。
論文 参考訳(メタデータ) (2024-12-27T16:21:58Z) - Iris: Breaking GUI Complexity with Adaptive Focus and Self-Refining [67.87810796668981]
インフォメーション・インフォメーション・インフォメーション・クロッピング(ISC)と自己精製デュアルラーニング(SRDL)
Irisは850KのGUIアノテーションだけで、複数のベンチマークで最先端のパフォーマンスを実現している。
これらの改善は、WebとOSエージェントの両方の下流タスクで大幅に向上した。
論文 参考訳(メタデータ) (2024-12-13T18:40:10Z) - Aguvis: Unified Pure Vision Agents for Autonomous GUI Interaction [69.57190742976091]
自律型GUIエージェントのための統合視覚ベースのフレームワークであるAguvisを紹介する。
提案手法は,画像に基づく観察と,自然言語の接地命令を視覚要素に活用する。
これまでの作業の限界に対処するため、モデル内に明確な計画と推論を統合する。
論文 参考訳(メタデータ) (2024-12-05T18:58:26Z) - Large Language Model-Brained GUI Agents: A Survey [42.82362907348966]
マルチモーダルモデルはGUI自動化の新しい時代を支えてきた。
彼らは自然言語理解、コード生成、視覚処理において例外的な能力を示した。
これらのエージェントはパラダイムシフトを表しており、ユーザーは単純な会話コマンドで複雑なマルチステップタスクを実行できる。
論文 参考訳(メタデータ) (2024-11-27T12:13:39Z) - Web-Scale Visual Entity Recognition: An LLM-Driven Data Approach [56.55633052479446]
Webスケールのビジュアルエンティティ認識は、クリーンで大規模なトレーニングデータがないため、重大な課題を呈している。
本稿では,ラベル検証,メタデータ生成,合理性説明に多モーダル大言語モデル(LLM)を活用することによって,そのようなデータセットをキュレートする新しい手法を提案する。
実験により、この自動キュレートされたデータに基づいてトレーニングされたモデルは、Webスケールの視覚的エンティティ認識タスクで最先端のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2024-10-31T06:55:24Z) - EDGE: Enhanced Grounded GUI Understanding with Enriched Multi-Granularity Synthetic Data [15.801018643716437]
本稿では,大規模視覚言語モデル(LVLM)のGUI理解と対話能力を,データ駆動型アプローチにより向上することを目的とする。
本稿では,Web上のWebページから大規模で粒度の高いトレーニングデータを自動的に生成する汎用データ合成フレームワークEDGEを提案する。
提案手法は,手動アノテーションへの依存を著しく低減し,研究者がWeb上で利用可能な膨大な公開リソースを活用して作業を進めることを可能にする。
論文 参考訳(メタデータ) (2024-10-25T10:46:17Z) - Spider2-V: How Far Are Multimodal Agents From Automating Data Science and Engineering Workflows? [73.81908518992161]
我々は、プロのデータサイエンスとエンジニアリングに焦点を当てた最初のマルチモーダルエージェントベンチマークであるSpider2-Vを紹介する。
Spider2-Vは、本物のコンピュータ環境における現実世界のタスクを特徴とし、20のエンタープライズレベルのプロフェッショナルアプリケーションを組み込んでいる。
これらのタスクは、エンタープライズデータソフトウェアシステムにおいて、コードを書き、GUIを管理することで、マルチモーダルエージェントがデータ関連のタスクを実行する能力を評価する。
論文 参考訳(メタデータ) (2024-07-15T17:54:37Z) - Symbolic Learning Enables Self-Evolving Agents [55.625275970720374]
エージェントシンボリックラーニング(エージェントシンボリックラーニング)(エージェントシンボリックラーニング)は、言語エージェントが自分自身で最適化できるための体系的なフレームワークである。
エージェント記号学習は、コネクショナリズム学習における2つの基本的なアルゴリズムを模倣することにより、言語エージェント内のシンボルネットワークを最適化するように設計されている。
我々は、標準ベンチマークと複雑な実世界のタスクの両方で概念実証実験を行う。
論文 参考訳(メタデータ) (2024-06-26T17:59:18Z) - Large Language Models Can Self-Improve At Web Agent Tasks [37.17001438055515]
大規模言語モデル(LLM)は、ゼロショットまたは少数ショットの方法でエージェントとして新しい環境をナビゲートする機能を最近デモした。
WebArena ベンチマークを用いて,LLM が長期タスクにおけるエージェントとしての性能を自己向上する方法について検討した。
自己改善手順により,WebArenaベンチマークのベースモデルよりもタスク完了率を31%向上させる。
論文 参考訳(メタデータ) (2024-05-30T17:52:36Z) - An Interactive Agent Foundation Model [49.77861810045509]
本稿では,AIエージェントを訓練するための新しいマルチタスクエージェントトレーニングパラダイムを用いた対話型エージェント基礎モデルを提案する。
トレーニングパラダイムは、視覚マスク付きオートエンコーダ、言語モデリング、次世代の予測など、多様な事前学習戦略を統一する。
私たちは、ロボティクス、ゲームAI、ヘルスケアという3つの異なる領域でフレームワークのパフォーマンスを実演します。
論文 参考訳(メタデータ) (2024-02-08T18:58:02Z) - VisualWebArena: Evaluating Multimodal Agents on Realistic Visual Web Tasks [93.85005277463802]
VisualWebArenaは、マルチモーダルWebエージェントのパフォーマンスを現実的なタスクで評価するために設計されたベンチマークである。
このベンチマークを実行するには、イメージテキスト入力を正確に処理し、自然言語命令を解釈し、ユーザが定義した目的を達成するためにウェブサイト上でアクションを実行する必要がある。
論文 参考訳(メタデータ) (2024-01-24T18:35:21Z) - ASSISTGUI: Task-Oriented Desktop Graphical User Interface Automation [30.693616802332745]
本稿では,ユーザが要求するタスクに応じて,Windowsプラットフォーム上でマウスとキーボードを操作することができるかどうかを評価するための新しいベンチマーク,AssistGUIを提案する。
本稿では,AIエージェントによって駆動される高度なGUIを組み込んだ高度なアクタ・クリティカル・フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-20T15:28:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。