論文の概要: TransferLight: Zero-Shot Traffic Signal Control on any Road-Network
- arxiv url: http://arxiv.org/abs/2412.09719v2
- Date: Mon, 23 Dec 2024 20:13:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-25 15:53:15.668237
- Title: TransferLight: Zero-Shot Traffic Signal Control on any Road-Network
- Title(参考訳): TransferLight:任意の道路網上のゼロショット信号制御
- Authors: Johann Schmidt, Frank Dreyer, Sayed Abid Hashimi, Sebastian Stober,
- Abstract要約: TransferLightは、ロードネットワーク全体の堅牢な一般化のために設計された新しいフレームワークである。
階層的で、異質で、有向的なグラフニューラルネットワークアーキテクチャは、トラフィックの粒度の動態を効果的に捉えます。
我々は、ゼロショットを任意の道路ネットワークに再トレーニングせずにスケールする、単一の重み付けポリシーを開発した。
- 参考スコア(独自算出の注目度): 0.6274767633959003
- License:
- Abstract: Traffic signal control plays a crucial role in urban mobility. However, existing methods often struggle to generalize beyond their training environments to unseen scenarios with varying traffic dynamics. We present TransferLight, a novel framework designed for robust generalization across road-networks, diverse traffic conditions and intersection geometries. At its core, we propose a log-distance reward function, offering spatially-aware signal prioritization while remaining adaptable to varied lane configurations - overcoming the limitations of traditional pressure-based rewards. Our hierarchical, heterogeneous, and directed graph neural network architecture effectively captures granular traffic dynamics, enabling transferability to arbitrary intersection layouts. Using a decentralized multi-agent approach, global rewards, and novel state transition priors, we develop a single, weight-tied policy that scales zero-shot to any road network without re-training. Through domain randomization during training, we additionally enhance generalization capabilities. Experimental results validate TransferLight's superior performance in unseen scenarios, advancing practical, generalizable intelligent transportation systems to meet evolving urban traffic demands.
- Abstract(参考訳): 交通信号の制御は都市移動において重要な役割を担っている。
しかし、既存の手法は、トレーニング環境を超えて、様々なトラフィックのダイナミクスを持つ見つからないシナリオに一般化するのに苦労することが多い。
本稿では,道路網,多様な交通条件,交差点地形をまたいだ堅牢な一般化を目的とした新しいフレームワークであるTransferLightを紹介する。
その中核となる対数距離報酬関数を提案し、従来の圧力に基づく報酬の制限を克服しながら、様々なレーン構成に適応しながら、空間的に認識可能な信号優先機能を提供する。
我々の階層的で異質で有向的なグラフニューラルネットワークアーキテクチャは、トラフィックのきめ細かいダイナミクスを効果的に捉え、任意の交差点レイアウトへの転送を可能にします。
分散マルチエージェントアプローチ,グローバル報酬,新しい状態遷移の先駆的手法を用いて,ゼロショットを任意の道路ネットワークに再トレーニングせずにスケールアップする,単一の重み付けポリシを開発する。
トレーニング中のドメインランダム化により、一般化能力も強化する。
実証実験により,TransferLightの予測不可能なシナリオにおける優れた性能を検証し,都市交通需要の進展に対応するために,実用的で汎用的なインテリジェントトランスポートシステムを推し進めた。
関連論文リスト
- A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
交通信号制御(TSC)は交通渋滞を低減し、交通の流れを円滑にし、アイドリング時間を短縮し、CO2排出量を減らすために重要である。
本研究では,道路交通の流れを視覚的観察によって調節するTSCのコンピュータビジョンアプローチについて検討する。
我々は、視覚ベースのTSCとそのベンチマークに向けて、TrafficDojoと呼ばれる総合的なトラフィックシミュレーションフレームワークを導入する。
論文 参考訳(メタデータ) (2024-03-11T16:42:29Z) - A Deep Reinforcement Learning Approach for Adaptive Traffic Routing in
Next-gen Networks [1.1586742546971471]
次世代ネットワークは、トラフィックダイナミクスに基づいたネットワーク構成を自動化し、適応的に調整する必要がある。
交通政策を決定する伝統的な手法は、通常は手作りのプログラミング最適化とアルゴリズムに基づいている。
我々は適応的なトラフィックルーティングのための深層強化学習(DRL)アプローチを開発する。
論文 参考訳(メタデータ) (2024-02-07T01:48:29Z) - Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting [70.66710698485745]
本稿では,AHSTN(Adaptive Hierarchical SpatioTemporal Network)を提案する。
AHSTNは空間階層を利用し、マルチスケール空間相関をモデル化する。
2つの実世界のデータセットの実験により、AHSTNはいくつかの強いベースラインよりも優れたパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2023-06-15T14:50:27Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
粗いトラフィックからのきめ細かなトラフィックフローの正確な推測は、新たな重要な問題である。
本稿では,道路ネットワークの知識を活かした新しい道路対応交通流磁化器(RATFM)を提案する。
提案手法は,高品質なトラフィックフローマップを作成できる。
論文 参考訳(メタデータ) (2021-09-29T07:51:49Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
交差点をナビゲートすることは、自動運転車にとって大きな課題の1つです。
本研究では,交通標識のみが提供された交差点をナビゲート可能なシステムの実装に着目する。
本研究では,時間ステップ毎に加速度と操舵角を予測するためのニューラルネットワークの訓練に用いる,モデルフリーの連続学習アルゴリズムを用いたマルチエージェントシステムを提案する。
論文 参考訳(メタデータ) (2021-04-28T07:54:40Z) - Graph Neural Network Reinforcement Learning for Autonomous
Mobility-on-Demand Systems [42.08603087208381]
我々は、AMoD制御問題は自然にノードワイドな意思決定問題として位置づけられていると論じる。
グラフニューラルネットワークによるAMoDシステムの再バランスを制御するための深層強化学習フレームワークを提案する。
重要可搬性タスクに直面した場合、学習したポリシーがゼロショット転送能力を有望に示す方法を示す。
論文 参考訳(メタデータ) (2021-04-23T06:42:38Z) - MetaVIM: Meta Variationally Intrinsic Motivated Reinforcement Learning for Decentralized Traffic Signal Control [54.162449208797334]
交通信号制御は、交差点を横断する交通信号を調整し、地域や都市の交通効率を向上させることを目的としている。
近年,交通信号制御に深部強化学習(RL)を適用し,各信号がエージェントとみなされる有望な性能を示した。
本稿では,近隣情報を考慮した各交差点の分散化政策を潜時的に学習するメタ変動固有モチベーション(MetaVIM)RL法を提案する。
論文 参考訳(メタデータ) (2021-01-04T03:06:08Z) - Multi-Agent Routing Value Iteration Network [88.38796921838203]
疎結合グラフの学習値に基づいてマルチエージェントルーティングを行うことができるグラフニューラルネットワークに基づくモデルを提案する。
最大25ノードのグラフ上で2つのエージェントでトレーニングしたモデルでは,より多くのエージェントやノードを持つ状況に容易に一般化できることが示されている。
論文 参考訳(メタデータ) (2020-07-09T22:16:45Z) - IG-RL: Inductive Graph Reinforcement Learning for Massive-Scale Traffic
Signal Control [4.273991039651846]
適応的な交通信号制御のスケーリングには、状態と行動空間を扱う必要がある。
本稿では,グラフ畳み込みネットワークに基づくインダクティブグラフ強化学習(IG-RL)を紹介する。
我々のモデルは、新しい道路網、交通分布、交通体制に一般化することができる。
論文 参考訳(メタデータ) (2020-03-06T17:17:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。