論文の概要: Precise Antigen-Antibody Structure Predictions Enhance Antibody Development with HelixFold-Multimer
- arxiv url: http://arxiv.org/abs/2412.09826v1
- Date: Fri, 13 Dec 2024 03:36:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-16 15:03:33.556635
- Title: Precise Antigen-Antibody Structure Predictions Enhance Antibody Development with HelixFold-Multimer
- Title(参考訳): HelixFold-Multimerを用いた精密抗原抗体構造予測
- Authors: Jie Gao, Jing Hu, Lihang Liu, Yang Xue, Kunrui Zhu, Xiaonan Zhang, Xiaomin Fang,
- Abstract要約: HelixFold-MultimerはAlphaFold-Multimerのフレームワーク上に構築されている。
抗体発生の洞察を与え、より正確な結合部位の同定を可能にする。
これらの進歩は、抗体研究と治療革新を支援するHelixFold-Multimerの可能性を浮き彫りにした。
- 参考スコア(独自算出の注目度): 7.702856943171885
- License:
- Abstract: The accurate prediction of antigen-antibody structures is essential for advancing immunology and therapeutic development, as it helps elucidate molecular interactions that underlie immune responses. Despite recent progress with deep learning models like AlphaFold and RoseTTAFold, accurately modeling antigen-antibody complexes remains a challenge due to their unique evolutionary characteristics. HelixFold-Multimer, a specialized model developed for this purpose, builds on the framework of AlphaFold-Multimer and demonstrates improved precision for antigen-antibody structures. HelixFold-Multimer not only surpasses other models in accuracy but also provides essential insights into antibody development, enabling more precise identification of binding sites, improved interaction prediction, and enhanced design of therapeutic antibodies. These advances underscore HelixFold-Multimer's potential in supporting antibody research and therapeutic innovation.
- Abstract(参考訳): 抗原抗体構造の正確な予測は、免疫応答を弱める分子間相互作用の解明に役立つため、免疫学や治療の発展に不可欠である。
AlphaFoldやRosTTAFoldのようなディープラーニングモデルによる最近の進歩にもかかわらず、抗原抗体複合体を正確にモデル化することは、その独特の進化的特性のために依然として課題である。
この目的のために開発された特殊なモデルであるHelixFold-Multimerは、AlphaFold-Multimerのフレームワークの上に構築され、抗原抗体構造の改善された精度を示す。
HelixFold-Multimerは、他のモデルの精度を超えるだけでなく、抗体開発に不可欠な洞察を与え、より正確な結合部位の同定、相互作用予測の改善、治療用抗体の設計の改善を可能にしている。
これらの進歩は、抗体研究と治療革新を支援するHelixFold-Multimerの可能性を浮き彫りにした。
関連論文リスト
- S$^2$ALM: Sequence-Structure Pre-trained Large Language Model for Comprehensive Antibody Representation Learning [8.059724314850799]
抗体は、特定の抗原に正確かつ強力な結合を通じて健康を守り、新型コロナウイルスを含む多くの疾患の治療に有望な治療効果を示す。
バイオメディカル言語モデルの最近の進歩は、複雑な生物学的構造や機能を理解する大きな可能性を示している。
本稿では,1つの総合的抗体基盤モデルにおいて,包括的および構造的情報を組み合わせたシーケンス構造型多段階事前訓練抗体言語モデル(S$2$ALM)を提案する。
論文 参考訳(メタデータ) (2024-11-20T14:24:26Z) - Retrieval Augmented Diffusion Model for Structure-informed Antibody Design and Optimization [8.546688995090491]
抗体は生物の免疫応答に必須のタンパク質である。
生成モデルにおける最近の進歩は、合理的抗体設計を著しく強化した。
本稿では,効率的な抗体設計のための検索拡張拡散フレームワーク RADAb を提案する。
論文 参考訳(メタデータ) (2024-10-19T08:53:01Z) - Large scale paired antibody language models [40.401345152825314]
IgBert と IgT5 は,これまでに開発された抗体特異的言語モデルの中で最も優れた性能を示した。
これらのモデルは、20億以上のObserved Spaceデータセットを使用して、包括的にトレーニングされている。
この進歩は、治療開発のための抗体設計を強化するために、機械学習、大規模データセット、高性能コンピューティングを活用する上で大きな前進となる。
論文 参考訳(メタデータ) (2024-03-26T17:21:54Z) - A Hierarchical Training Paradigm for Antibody Structure-sequence
Co-design [54.30457372514873]
抗体配列構造共設計のための階層的訓練パラダイム(HTP)を提案する。
HTPは4段階の訓練段階から構成され、それぞれが特定のタンパク質のモダリティに対応する。
実証実験により、HTPは共同設計問題において新しい最先端性能を設定できることが示されている。
論文 参考訳(メタデータ) (2023-10-30T02:39:15Z) - Cross-Gate MLP with Protein Complex Invariant Embedding is A One-Shot
Antibody Designer [58.97153056120193]
抗体の特異性は、その相補性決定領域(CDR)によって決定される
従来の研究では、複雑な技術を使ってCDRを生成するが、不適切な幾何学的モデリングに悩まされている。
本稿では,CDRの1次元配列と3次元構造を1ショットで共設計できるテクスタイスシンプルで効果的なモデルを提案する。
論文 参考訳(メタデータ) (2023-04-21T13:24:26Z) - xTrimoABFold: De novo Antibody Structure Prediction without MSA [77.47606749555686]
我々は、抗体配列から抗体構造を予測するために、xTrimoABFoldという新しいモデルを開発した。
CDRにおけるドメイン特異的焦点損失のアンサンブル損失とフレーム整合点損失を最小化することにより,PDBの抗体構造をエンドツーエンドにトレーニングした。
論文 参考訳(メタデータ) (2022-11-30T09:26:08Z) - Incorporating Pre-training Paradigm for Antibody Sequence-Structure
Co-design [134.65287929316673]
深層学習に基づく計算抗体の設計は、人間の経験を補完する可能性のあるデータから自動的に抗体パターンをマイニングするので、注目を集めている。
計算手法は高品質な抗体構造データに大きく依存しており、非常に限定的である。
幸いなことに、CDRをモデル化し、構造データへの依存を軽減するために有効な抗体の配列データが多数存在する。
論文 参考訳(メタデータ) (2022-10-26T15:31:36Z) - Reprogramming Pretrained Language Models for Antibody Sequence Infilling [72.13295049594585]
抗体の計算設計には、構造的一貫性を維持しながら、新規で多様な配列を生成することが含まれる。
近年のディープラーニングモデルでは優れた結果が得られたが、既知の抗体配列/構造対の数が限られているため、性能が劣化することが多い。
これは、ソース言語でトレーニング済みのモデルを再利用して、異なる言語で、データが少ないタスクに適応するものです。
論文 参考訳(メタデータ) (2022-10-05T20:44:55Z) - Deciphering antibody affinity maturation with language models and weakly
supervised learning [10.506336354512145]
我々は558万の天然抗体配列に基づいて訓練された言語モデルであるAntiBERTyを紹介する。
その結果,レパートリーでは,アフィニティ成熟に類似した抗体を軌跡にまとめることができた。
マルチインスタンス学習フレームワークを用いて、冗長なシーケンスを予測するために訓練されたモデルが、プロセスのキーバインディング残基を識別することを示す。
論文 参考訳(メタデータ) (2021-12-14T23:05:01Z) - Accelerating Antimicrobial Discovery with Controllable Deep Generative
Models and Molecular Dynamics [109.70543391923344]
CLaSS(Controlled Latent attribute Space Smpling)は、分子の属性制御のための効率的な計算手法である。
深層学習分類器と原子論シミュレーションから得られた新しい特徴を併用して, 生成分子を付加的なキー属性としてスクリーニングする。
提案手法は, 強い広帯域能を有する非毒性抗菌性ペプチド(AMP)を設計するためのものである。
論文 参考訳(メタデータ) (2020-05-22T15:57:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。