Multivariate Time Series Clustering for Environmental State Characterization of Ground-Based Gravitational-Wave Detectors
- URL: http://arxiv.org/abs/2412.09832v1
- Date: Fri, 13 Dec 2024 03:51:39 GMT
- Title: Multivariate Time Series Clustering for Environmental State Characterization of Ground-Based Gravitational-Wave Detectors
- Authors: Rutuja Gurav, Isaac Kelly, Pooyan Goodarzi, Anamaria Effler, Barry Barish, Evangelos Papalexakis, Jonathan Richardson,
- Abstract summary: Gravitational-wave observatories like LIGO are large-scale, terrestrial instruments housed in infrastructure that spans a multi-kilometer geographic area.
Despite exquisite seismic isolation, they remain susceptible to seismic noise and other terrestrial disturbances.
It is critical to characterize the seismic state of these observatories to identify a set of temporal patterns that can inform the detector operators.
- Score: 0.0
- License:
- Abstract: Gravitational-wave observatories like LIGO are large-scale, terrestrial instruments housed in infrastructure that spans a multi-kilometer geographic area and which must be actively controlled to maintain operational stability for long observation periods. Despite exquisite seismic isolation, they remain susceptible to seismic noise and other terrestrial disturbances that can couple undesirable vibrations into the instrumental infrastructure, potentially leading to control instabilities or noise artifacts in the detector output. It is, therefore, critical to characterize the seismic state of these observatories to identify a set of temporal patterns that can inform the detector operators in day-to-day monitoring and diagnostics. On a day-to-day basis, the operators monitor several seismically relevant data streams to diagnose operational instabilities and sources of noise using some simple empirically-determined thresholds. It can be untenable for a human operator to monitor multiple data streams in this manual fashion and thus a distillation of these data-streams into a more human-friendly format is sought. In this paper, we present an end-to-end machine learning pipeline for features-based multivariate time series clustering to achieve this goal and to provide actionable insights to the detector operators by correlating found clusters with events of interest in the detector.
Related papers
- Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Generative adversarial wavelet neural operator: Application to fault
detection and isolation of multivariate time series data [3.265784083548797]
This article proposes a generative adversarial wavelet neural operator (GAWNO) as a novel unsupervised deep learning approach for fault detection and isolation.
In the first stage, the GAWNO is trained on a dataset of normal operating conditions to learn the underlying data distribution.
In the second stage, a reconstruction error-based threshold approach is employed to detect and isolate faults based on the discrepancy values.
arXiv Detail & Related papers (2024-01-08T16:36:47Z) - Imbalanced Aircraft Data Anomaly Detection [103.01418862972564]
Anomaly detection in temporal data from sensors under aviation scenarios is a practical but challenging task.
We propose a Graphical Temporal Data Analysis framework.
It consists three modules, named Series-to-Image (S2I), Cluster-based Resampling Approach using Euclidean Distance (CRD) and Variance-Based Loss (VBL)
arXiv Detail & Related papers (2023-05-17T09:37:07Z) - Robust Detection of Lead-Lag Relationships in Lagged Multi-Factor Models [61.10851158749843]
Key insights can be obtained by discovering lead-lag relationships inherent in the data.
We develop a clustering-driven methodology for robust detection of lead-lag relationships in lagged multi-factor models.
arXiv Detail & Related papers (2023-05-11T10:30:35Z) - Novel features for the detection of bearing faults in railway vehicles [88.89591720652352]
We introduce Mel-Frequency Cepstral Coefficients (MFCCs) and features extracted from the Amplitude Modulation Spectrogram (AMS) as features for the detection of bearing faults.
arXiv Detail & Related papers (2023-04-14T10:09:50Z) - Training Process of Unsupervised Learning Architecture for Gravity Spy
Dataset [2.8555963243398073]
Transient noise appearing in the data from gravitational-wave detectors frequently causes problems.
Because transient noise is considered to be associated with the environment and instrument, its classification would help to understand its origin and improve the detector's performance.
In a previous study, an architecture for classifying transient noise using a time-frequency 2D image (spectrogram) is proposed, which uses unsupervised deep learning combined with variational autoencoder and invariant information clustering.
The proposed unsupervised-learning architecture is applied to the Gravity Spy dataset, which consists of Advanced Laser Interferometer Gravitational-Wave Observatory (Advanced
arXiv Detail & Related papers (2022-08-07T02:51:36Z) - Functional Anomaly Detection: a Benchmark Study [4.444788548423704]
Anomaly detection can now rely on measurements sampled at a very high frequency.
It is the purpose of this paper to investigate the performance of recent techniques for anomaly detection in the functional setup on real datasets.
arXiv Detail & Related papers (2022-01-13T18:20:32Z) - Unsupervised Learning Architecture for Classifying the Transient Noise
of Interferometric Gravitational-wave Detectors [2.8555963243398073]
transient noise with non-stationary and non-Gaussian features occurs at a high rate.
Classification of transient noise can offer clues for exploring its origin and improving the performance of the detector.
In this study, we propose an unsupervised learning architecture for the classification of transient noise.
arXiv Detail & Related papers (2021-11-19T05:37:06Z) - On the Frequency Bias of Generative Models [61.60834513380388]
We analyze proposed measures against high-frequency artifacts in state-of-the-art GAN training.
We find that none of the existing approaches can fully resolve spectral artifacts yet.
Our results suggest that there is great potential in improving the discriminator.
arXiv Detail & Related papers (2021-11-03T18:12:11Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - Federated Variational Learning for Anomaly Detection in Multivariate
Time Series [13.328883578980237]
We propose an unsupervised time series anomaly detection framework in a federated fashion.
We leave the training data distributed at the edge to learn a shared Variational Autoencoder (VAE) based on Convolutional Gated Recurrent Unit (ConvGRU) model.
Experiments on three real-world networked sensor datasets illustrate the advantage of our approach over other state-of-the-art models.
arXiv Detail & Related papers (2021-08-18T22:23:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.