Data-Driven Transfer Learning Framework for Estimating Turning Movement Counts
- URL: http://arxiv.org/abs/2412.09861v1
- Date: Fri, 13 Dec 2024 05:02:16 GMT
- Title: Data-Driven Transfer Learning Framework for Estimating Turning Movement Counts
- Authors: Xiaobo Ma, Hyunsoo Noh, Ryan Hatch, James Tokishi, Zepu Wang,
- Abstract summary: This research proposes a novel framework leveraging transfer learning to estimate turning movement counts (TMCs) at intersections.
The performance of the proposed TL model was compared with eight state-of-the-art regression models and achieved the lowest values in terms of Mean Absolute Error and Root Mean Square Error.
- Score: 2.5920304684810014
- License:
- Abstract: Urban transportation networks are vital for the efficient movement of people and goods, necessitating effective traffic management and planning. An integral part of traffic management is understanding the turning movement counts (TMCs) at intersections, Accurate TMCs at intersections are crucial for traffic signal control, congestion mitigation, and road safety. In general, TMCs are obtained using physical sensors installed at intersections, but this approach can be cost-prohibitive and technically challenging, especially for cities with extensive road networks. Recent advancements in machine learning and data-driven approaches have offered promising alternatives for estimating TMCs. Traffic patterns can vary significantly across different intersections due to factors such as road geometry, traffic signal settings, and local driver behaviors. This domain discrepancy limits the generalizability and accuracy of machine learning models when applied to new or unseen intersections. In response to these limitations, this research proposes a novel framework leveraging transfer learning (TL) to estimate TMCs at intersections by using traffic controller event-based data, road infrastructure data, and point-of-interest (POI) data. Evaluated on 30 intersections in Tucson, Arizona, the performance of the proposed TL model was compared with eight state-of-the-art regression models and achieved the lowest values in terms of Mean Absolute Error and Root Mean Square Error.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - Towards Multi-agent Reinforcement Learning based Traffic Signal Control through Spatio-temporal Hypergraphs [19.107744041461316]
Traffic signal control systems (TSCSs) are integral to intelligent traffic management, fostering efficient vehicle flow.
Traditional approaches often simplify road networks into standard graphs.
We propose a novel TSCS framework to realize intelligent traffic control.
arXiv Detail & Related papers (2024-04-17T02:46:18Z) - Graph Attention Network for Lane-Wise and Topology-Invariant Intersection Traffic Simulation [8.600701437207725]
We propose two efficient and accurate "Digital Twin" models for intersections.
These digital twins capture temporal, spatial, and contextual aspects of traffic within intersections.
Our study's applications extend to lane reconfiguration, driving behavior analysis, and facilitating informed decisions regarding intersection safety and efficiency enhancements.
arXiv Detail & Related papers (2024-04-11T03:02:06Z) - DenseLight: Efficient Control for Large-scale Traffic Signals with Dense
Feedback [109.84667902348498]
Traffic Signal Control (TSC) aims to reduce the average travel time of vehicles in a road network.
Most prior TSC methods leverage deep reinforcement learning to search for a control policy.
We propose DenseLight, a novel RL-based TSC method that employs an unbiased reward function to provide dense feedback on policy effectiveness.
arXiv Detail & Related papers (2023-06-13T05:58:57Z) - Traffic Prediction with Transfer Learning: A Mutual Information-based
Approach [11.444576186559487]
We propose TrafficTL, a cross-city traffic prediction approach that uses big data from other cities to aid data-scarce cities in traffic prediction.
TrafficTL is evaluated by comprehensive case studies on three real-world datasets and outperforms the state-of-the-art baseline by around 8 to 25 percent.
arXiv Detail & Related papers (2023-03-13T15:27:07Z) - Modeling Network-level Traffic Flow Transitions on Sparse Data [6.756998301171409]
We present DTIGNN, an approach that can predict network-level traffic flows from sparse data.
We demonstrate that our method outperforms state-of-the-art methods and can better support decision-making in transportation.
arXiv Detail & Related papers (2022-08-13T13:30:35Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
We organize an experimental campaign with video measurement in an area within the urban network of Zurich, Switzerland.
We focus on capturing the traffic state in terms of traffic flow and travel times by ensuring measurements from established thermal cameras.
We propose a simple yet efficient Multiple Linear Regression (MLR) model to estimate travel times with fusion of various data sources.
arXiv Detail & Related papers (2021-08-02T08:13:57Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
Navigating through intersections is one of the main challenging tasks for an autonomous vehicle.
In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided.
We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step.
arXiv Detail & Related papers (2021-04-28T07:54:40Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
Control of traffic signals is fundamental and critical to alleviate traffic congestion in urban areas.
Because of the high complexity of modelling the problem, experimental settings of current works are often inconsistent.
We propose a novel and strong baseline model based on deep reinforcement learning with the encoder-decoder structure.
arXiv Detail & Related papers (2021-01-24T03:55:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.