論文の概要: Precision-Enhanced Human-Object Contact Detection via Depth-Aware Perspective Interaction and Object Texture Restoration
- arxiv url: http://arxiv.org/abs/2412.09920v2
- Date: Mon, 16 Dec 2024 07:50:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:57:58.175041
- Title: Precision-Enhanced Human-Object Contact Detection via Depth-Aware Perspective Interaction and Object Texture Restoration
- Title(参考訳): 深度視点相互作用と物体テクスチャ復元による高精度な人体接触検出
- Authors: Yuxiao Wang, Wenpeng Neng, Zhenao Wei, Yu Lei, Weiying Xue, Nan Zhuang, Yanwu Xu, Xinyu Jiang, Qi Liu,
- Abstract要約: 人間オブジェクト接触(Human-object Contact、HOT)は、人間と物体が接触する領域を正確に識別するように設計されている。
現在の手法では、オブジェクトが頻繁にビューをブロックしているシナリオを考慮できません。
我々は、深度マップ生成モデルを用いて、カメラに関連する人間や物体の深度情報を提供するPIHOTと呼ばれる視点相互作用HOT検出器を提案する。
- 参考スコア(独自算出の注目度): 10.840465766762902
- License:
- Abstract: Human-object contact (HOT) is designed to accurately identify the areas where humans and objects come into contact. Current methods frequently fail to account for scenarios where objects are frequently blocking the view, resulting in inaccurate identification of contact areas. To tackle this problem, we suggest using a perspective interaction HOT detector called PIHOT, which utilizes a depth map generation model to offer depth information of humans and objects related to the camera, thereby preventing false interaction detection. Furthermore, we use mask dilatation and object restoration techniques to restore the texture details in covered areas, improve the boundaries between objects, and enhance the perception of humans interacting with objects. Moreover, a spatial awareness perception is intended to concentrate on the characteristic features close to the points of contact. The experimental results show that the PIHOT algorithm achieves state-of-the-art performance on three benchmark datasets for HOT detection tasks. Compared to the most recent DHOT, our method enjoys an average improvement of 13%, 27.5%, 16%, and 18.5% on SC-Acc., C-Acc., mIoU, and wIoU metrics, respectively.
- Abstract(参考訳): 人間オブジェクト接触(Human-object Contact、HOT)は、人間と物体が接触する領域を正確に識別するように設計されている。
現在の手法では、オブジェクトが頻繁にビューをブロックしているシナリオをしばしば考慮できません。
この問題に対処するために,深度マップ生成モデルを用いた視点相互作用HOT検出器PIHOTを用いて,カメラに関連する人間や物体の深度情報を提供し,誤干渉検出を防止することを提案する。
さらに,マスク拡張と物体復元技術を用いて,被被覆領域のテクスチャの細部を復元し,物体の境界を改良し,物体と相互作用する人間の知覚を高める。
さらに、空間認識は、接触点に近い特徴に焦点を絞ることを目的としている。
実験の結果, PIHOTアルゴリズムは, HOT検出タスクのための3つのベンチマークデータセットに対して, 最先端の性能を実現することがわかった。
最新のDHOTと比較して, SC-Accでは平均13%, 27.5%, 16%, 18.5%の改善が見られた。
、C-Acc。
、mIoU、wIoU。
関連論文リスト
- Correlation of Object Detection Performance with Visual Saliency and Depth Estimation [0.09208007322096533]
本稿では,物体検出精度と,深度予測と視覚塩分率予測の2つの基本的な視覚的課題の相関について検討する。
分析の結果,これらの相関は対象のカテゴリ間で有意な変化を示し,相関値がより小さいオブジェクトの最大3倍も大きいことが判明した。
これらの結果から, 物体検出アーキテクチャに視覚的サリエンシ機能を組み込むことは, 深度情報よりも有益であることが示唆された。
論文 参考訳(メタデータ) (2024-11-05T06:34:19Z) - UnionDet: Union-Level Detector Towards Real-Time Human-Object
Interaction Detection [35.2385914946471]
本稿では,新しい結合レベル検出器を用いたHOI検出のための一段階メタアーキテクチャを提案する。
ヒトと物体の相互作用の1段階検出器は、相互作用予測時間4x14xを著しく減少させる。
論文 参考訳(メタデータ) (2023-12-19T23:34:43Z) - DECO: Dense Estimation of 3D Human-Scene Contact In The Wild [54.44345845842109]
SMPL体上の接触を推定するために、身体部分駆動とシーンコンテキスト駆動の両方の注意を用いた新しい3D接触検出器を訓練する。
すべてのベンチマークで既存のSOTAメソッドよりも大幅に優れています。
また、DECが自然画像における多様で挑戦的な現実世界の人間のインタラクションによく当てはまることを定性的に示す。
論文 参考訳(メタデータ) (2023-09-26T21:21:07Z) - HODN: Disentangling Human-Object Feature for HOI Detection [51.48164941412871]
本稿では,Human and Object Disentangling Network (HODN) を提案し,Human-Object Interaction (HOI) の関係を明示的にモデル化する。
インタラクションに人間的特徴がより寄与していることを考慮し,インタラクションデコーダが人間中心の領域に焦点を当てていることを確認するためのヒューマンガイドリンク手法を提案する。
提案手法は,V-COCOとHICO-Det Linkingデータセットの競合性能を実現する。
論文 参考訳(メタデータ) (2023-08-20T04:12:50Z) - Detecting Human-Object Contact in Images [75.35017308643471]
人間は常にオブジェクトに接触し、タスクを動かします。
画像から身体とシーンの接触を検出する堅牢な方法はない。
我々は、画像のための人間と物体の接触のデータセットを新たに構築する。
論文 参考訳(メタデータ) (2023-03-06T18:56:26Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
ドメイン適応によるオブジェクトの無傷な特徴を関連付ける新しい3D検出フレームワークを提案する。
我々は,KITTIの3D検出ベンチマークにおいて,精度と速度の両面で最新の性能を実現する。
論文 参考訳(メタデータ) (2022-08-24T16:54:38Z) - Depth Estimation Matters Most: Improving Per-Object Depth Estimation for
Monocular 3D Detection and Tracking [47.59619420444781]
検出・追跡を含む単眼的3D知覚へのアプローチは、LiDARベースの手法と比較して性能が劣ることが多い。
本稿では,オブジェクト(トラックレット)の複数のフレームに異なる表現(RGBと擬似LiDAR)と時間情報を組み合わせた多層融合手法を提案する。
論文 参考訳(メタデータ) (2022-06-08T03:37:59Z) - Detecting Human-Object Interaction via Fabricated Compositional Learning [106.37536031160282]
ヒューマンオブジェクトインタラクション(HOI)検出は、高レベルのシーン理解のための基本的なタスクです。
人間は珍しいまたは見えないHOIのサンプルを認識する非常に強力な構成知覚能力があります。
オープン長尾HOI検出の課題を解決するために,FCL(Fabricated Compositional Learning)を提案する。
論文 参考訳(メタデータ) (2021-03-15T08:52:56Z) - Learning Human-Object Interaction Detection using Interaction Points [140.0200950601552]
本研究では,人間と物体の相互作用を直接検出する新しい完全畳み込み手法を提案する。
我々のネットワークは相互作用点を予測し、その相互作用を直接ローカライズし、分類する。
V-COCOとHICO-DETの2つの人気のあるベンチマークで実験が行われる。
論文 参考訳(メタデータ) (2020-03-31T08:42:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。