FM2S: Towards Spatially-Correlated Noise Modeling in Zero-Shot Fluorescence Microscopy Image Denoising
- URL: http://arxiv.org/abs/2412.10031v2
- Date: Sun, 30 Mar 2025 10:44:34 GMT
- Title: FM2S: Towards Spatially-Correlated Noise Modeling in Zero-Shot Fluorescence Microscopy Image Denoising
- Authors: Jizhihui Liu, Qixun Teng, Qing Ma, Junjun Jiang,
- Abstract summary: Fluorescence Micrograph to Self (FM2S) is a zero-shot denoiser that achieves efficient Fluorescence Micrograph to Self (FM2S) denoising through three key innovations.<n>Experiments across FMI datasets demonstrate FM2S's superiority: It outperforms CVF-SID by 1.4dB PSNR on average while requiring 0.1% parameters of AP-BSN.
- Score: 33.383511185170214
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fluorescence microscopy image (FMI) denoising faces critical challenges due to the compound mixed Poisson-Gaussian noise with strong spatial correlation and the impracticality of acquiring paired noisy/clean data in dynamic biomedical scenarios. While supervised methods trained on synthetic noise (e.g., Gaussian/Poisson) suffer from out-of-distribution generalization issues, existing self-supervised approaches degrade under real FMI noise due to oversimplified noise assumptions and computationally intensive deep architectures. In this paper, we propose Fluorescence Micrograph to Self (FM2S), a zero-shot denoiser that achieves efficient FMI denoising through three key innovations: 1) A noise injection module that ensures training data sufficiency through adaptive Poisson-Gaussian synthesis while preserving spatial correlation and global statistics of FMI noise for robust model generalization; 2) A two-stage progressive learning strategy that first recovers structural priors via pre-denoised targets then refines high-frequency details through noise distribution alignment; 3) An ultra-lightweight network (3.5k parameters) enabling rapid convergence with 270$\times$ faster training and inference than SOTAs. Extensive experiments across FMI datasets demonstrate FM2S's superiority: It outperforms CVF-SID by 1.4dB PSNR on average while requiring 0.1% parameters of AP-BSN. Notably, FM2S maintains stable performance across varying noise levels, proving its practicality for microscopy platforms with diverse sensor characteristics. Code and datasets will be released.
Related papers
- FUSE: Label-Free Image-Event Joint Monocular Depth Estimation via Frequency-Decoupled Alignment and Degradation-Robust Fusion [63.87313550399871]
Image-event joint depth estimation methods leverage complementary modalities for robust perception, yet face challenges in generalizability.
We propose Self-supervised Transfer (PST) and FrequencyDe-coupled Fusion module (FreDF)
PST establishes cross-modal knowledge transfer through latent space alignment with image foundation models.
FreDF explicitly decouples high-frequency edge features from low-frequency structural components, resolving modality-specific frequency mismatches.
arXiv Detail & Related papers (2025-03-25T15:04:53Z) - Unsupervised CP-UNet Framework for Denoising DAS Data with Decay Noise [13.466125373185399]
Distributed acoustic sensor (DAS) technology leverages optical fiber cables to detect acoustic signals.
DAS exhibits a lower signal-to-noise ratio (S/N) compared to geophones.
This reduced S/N can negatively impact data analyses containing inversion and interpretation.
arXiv Detail & Related papers (2025-02-19T03:09:49Z) - Self-Supervised Diffusion MRI Denoising via Iterative and Stable Refinement [20.763457281944834]
Di-Fusion is a fully self-supervised denoising method that leverages the latter diffusion steps and an adaptive sampling process.
Our experiments on real and simulated data demonstrate that Di-Fusion achieves state-of-the-art performance in microstructure modeling, tractography tracking, and other downstream tasks.
arXiv Detail & Related papers (2025-01-23T10:01:33Z) - Impact of Noisy Supervision in Foundation Model Learning [91.56591923244943]
This paper is the first work to comprehensively understand and analyze the nature of noise in pre-training datasets.
We propose a tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise and improve generalization.
arXiv Detail & Related papers (2024-03-11T16:22:41Z) - Noise Level Adaptive Diffusion Model for Robust Reconstruction of Accelerated MRI [34.361078452552945]
Real-world MRI acquisitions already contain inherent noise due to thermal fluctuations.
We propose a posterior sampling strategy with a novel NoIse Level Adaptive Data Consistency (Nila-DC) operation.
Our method surpasses the state-of-the-art MRI reconstruction methods, and is highly robust against various noise levels.
arXiv Detail & Related papers (2024-03-08T12:07:18Z) - Inference Stage Denoising for Undersampled MRI Reconstruction [13.8086726938161]
Reconstruction of magnetic resonance imaging (MRI) data has been positively affected by deep learning.
A key challenge remains: to improve generalisation to distribution shifts between the training and testing data.
arXiv Detail & Related papers (2024-02-12T12:50:10Z) - Blue noise for diffusion models [50.99852321110366]
We introduce a novel and general class of diffusion models taking correlated noise within and across images into account.
Our framework allows introducing correlation across images within a single mini-batch to improve gradient flow.
We perform both qualitative and quantitative evaluations on a variety of datasets using our method.
arXiv Detail & Related papers (2024-02-07T14:59:25Z) - Physics-guided Noise Neural Proxy for Practical Low-light Raw Image
Denoising [22.11250276261829]
Recently, the mainstream practice for training low-light raw image denoising has shifted towards employing synthetic data.
Noise modeling, which focuses on characterizing the noise distribution of real-world sensors, profoundly influences the effectiveness and practicality of synthetic data.
We propose a novel strategy: learning the noise model from dark frames instead of paired real data, to break down the data dependency.
arXiv Detail & Related papers (2023-10-13T14:14:43Z) - Amplitude-Varying Perturbation for Balancing Privacy and Utility in
Federated Learning [86.08285033925597]
This paper presents a new DP perturbation mechanism with a time-varying noise amplitude to protect the privacy of federated learning.
We derive an online refinement of the series to prevent FL from premature convergence resulting from excessive perturbation noise.
The contribution of the new DP mechanism to the convergence and accuracy of privacy-preserving FL is corroborated, compared to the state-of-the-art Gaussian noise mechanism with a persistent noise amplitude.
arXiv Detail & Related papers (2023-03-07T22:52:40Z) - Noise2SR: Learning to Denoise from Super-Resolved Single Noisy
Fluorescence Image [9.388253054229155]
Noise2SR is designed for training with paired noisy images of different dimensions.
It is more efficiently self-supervised and able to restore more image details from a single noisy observation.
We envision that Noise2SR has the potential to improve more other kind of scientific imaging quality.
arXiv Detail & Related papers (2022-09-14T04:44:41Z) - Noise2NoiseFlow: Realistic Camera Noise Modeling without Clean Images [35.29066692454865]
This paper proposes a framework for training a noise model and a denoiser simultaneously.
It relies on pairs of noisy images rather than noisy/clean paired image data.
The trained denoiser is shown to significantly improve upon both supervised and weakly supervised baseline denoising approaches.
arXiv Detail & Related papers (2022-06-02T15:31:40Z) - Learning to Generate Realistic Noisy Images via Pixel-level Noise-aware
Adversarial Training [50.018580462619425]
We propose a novel framework, namely Pixel-level Noise-aware Generative Adrial Network (PNGAN)
PNGAN employs a pre-trained real denoiser to map the fake and real noisy images into a nearly noise-free solution space.
For better noise fitting, we present an efficient architecture Simple Multi-versa-scale Network (SMNet) as the generator.
arXiv Detail & Related papers (2022-04-06T14:09:02Z) - MR Image Denoising and Super-Resolution Using Regularized Reverse
Diffusion [38.62448918459113]
We propose a new denoising method based on score-based reverse diffusion sampling.
Our network, trained only with coronal knee scans, excels even on out-of-distribution in vivo liver MRI data.
arXiv Detail & Related papers (2022-03-23T10:35:06Z) - De-Noising of Photoacoustic Microscopy Images by Deep Learning [0.9786690381850356]
Photoacoustic microscopy (PAM) imaging suffers from noise due to the maximum permissible exposure of laser intensity, attenuation of ultrasound in the tissue, and the inherent noise of the transducer.
We propose a deep learning-based method to remove complex noise from PAM images without mathematical priors and manual selection of settings for different input images.
arXiv Detail & Related papers (2022-01-12T05:13:57Z) - Rethinking Noise Synthesis and Modeling in Raw Denoising [75.55136662685341]
We introduce a new perspective to synthesize noise by directly sampling from the sensor's real noise.
It inherently generates accurate raw image noise for different camera sensors.
arXiv Detail & Related papers (2021-10-10T10:45:24Z) - Adaptive Multi-View ICA: Estimation of noise levels for optimal
inference [65.94843987207445]
Adaptive multiView ICA (AVICA) is a noisy ICA model where each view is a linear mixture of shared independent sources with additive noise on the sources.
On synthetic data, AVICA yields better sources estimates than other group ICA methods thanks to its explicit MMSE estimator.
On real magnetoencephalograpy (MEG) data, we provide evidence that the decomposition is less sensitive to sampling noise and that the noise variance estimates are biologically plausible.
arXiv Detail & Related papers (2021-02-22T13:10:12Z) - Noise2Stack: Improving Image Restoration by Learning from Volumetric
Data [0.0]
We introduce Noise2Stack, an extension of the Noise2Noise method to image stacks.
Our experiments on magnetic resonance brain scans and newly acquired multiplane microscopy data show that learning only from image neighbors in a stack is sufficient to outperform Noise2Noise and Noise2Void.
arXiv Detail & Related papers (2020-11-10T14:01:47Z) - Unpaired Learning of Deep Image Denoising [80.34135728841382]
This paper presents a two-stage scheme by incorporating self-supervised learning and knowledge distillation.
For self-supervised learning, we suggest a dilated blind-spot network (D-BSN) to learn denoising solely from real noisy images.
Experiments show that our unpaired learning method performs favorably on both synthetic noisy images and real-world noisy photographs.
arXiv Detail & Related papers (2020-08-31T16:22:40Z) - Improving Blind Spot Denoising for Microscopy [73.94017852757413]
We present a novel way to improve the quality of self-supervised denoising.
We assume the clean image to be the result of a convolution with a point spread function (PSF) and explicitly include this operation at the end of our neural network.
arXiv Detail & Related papers (2020-08-19T13:06:24Z) - Dual Adversarial Network: Toward Real-world Noise Removal and Noise
Generation [52.75909685172843]
Real-world image noise removal is a long-standing yet very challenging task in computer vision.
We propose a novel unified framework to deal with the noise removal and noise generation tasks.
Our method learns the joint distribution of the clean-noisy image pairs.
arXiv Detail & Related papers (2020-07-12T09:16:06Z) - Flexible Image Denoising with Multi-layer Conditional Feature Modulation [56.018132592622706]
We present a novel flexible image enoising network (CFMNet) by equipping an U-Net backbone with conditional feature modulation (CFM) modules.
In comparison to channel-wise shifting only in the first layer, CFMNet can make better use of noise level information by deploying multiple layers of CFM.
Our CFMNet is effective in exploiting noise level information for flexible non-blind denoising, and performs favorably against the existing deep image denoising methods in terms of both quantitative metrics and visual quality.
arXiv Detail & Related papers (2020-06-24T06:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.