論文の概要: Object-Focused Data Selection for Dense Prediction Tasks
- arxiv url: http://arxiv.org/abs/2412.10032v1
- Date: Fri, 13 Dec 2024 10:47:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-16 15:02:44.302636
- Title: Object-Focused Data Selection for Dense Prediction Tasks
- Title(参考訳): 難易度予測タスクのためのオブジェクト焦点データ選択
- Authors: Niclas Popp, Dan Zhang, Jan Hendrik Metzen, Matthias Hein, Lukas Schott,
- Abstract要約: 本稿では、制約付きアノテーション予算の下でラベル付けのための画像の代表的なサブセットを選択することの課題について考察する。
我々は,オブジェクトレベルの表現を活用して,選択した画像サブセットがターゲットクラスを意味的にカバーすることを保証するオブジェクト指向データ選択(OFDS)を提案する。
- 参考スコア(独自算出の注目度): 38.062117168168264
- License:
- Abstract: Dense prediction tasks such as object detection and segmentation require high-quality labels at pixel level, which are costly to obtain. Recent advances in foundation models have enabled the generation of autolabels, which we find to be competitive but not yet sufficient to fully replace human annotations, especially for more complex datasets. Thus, we consider the challenge of selecting a representative subset of images for labeling from a large pool of unlabeled images under a constrained annotation budget. This task is further complicated by imbalanced class distributions, as rare classes are often underrepresented in selected subsets. We propose object-focused data selection (OFDS) which leverages object-level representations to ensure that the selected image subsets semantically cover the target classes, including rare ones. We validate OFDS on PASCAL VOC and Cityscapes for object detection and semantic segmentation tasks. Our experiments demonstrate that prior methods which employ image-level representations fail to consistently outperform random selection. In contrast, OFDS consistently achieves state-of-the-art performance with substantial improvements over all baselines in scenarios with imbalanced class distributions. Moreover, we demonstrate that pre-training with autolabels on the full datasets before fine-tuning on human-labeled subsets selected by OFDS further enhances the final performance.
- Abstract(参考訳): オブジェクト検出やセグメンテーションのような複雑な予測タスクでは、ピクセルレベルで高品質なラベルが必要であり、取得にはコストがかかる。
基礎モデルの最近の進歩によりオートラベルの生成が可能となり、競争力はあるものの、特に複雑なデータセットにおいて、人間のアノテーションを完全に置き換えるには不十分であることが判明した。
そこで本稿では,制約付きアノテーション予算の下で,ラベル付き画像の大きなプールからラベル付けのための画像の代表的なサブセットを選択するという課題を考察する。
このタスクは、希少なクラスが選択された部分集合で不足しているため、不均衡なクラス分布によってさらに複雑である。
オブジェクトレベルの表現を活用するオブジェクト中心データ選択(OFDS)を提案し、選択された画像サブセットが、稀なものを含むターゲットクラスを意味的にカバーすることを保証する。
オブジェクト検出とセマンティックセグメンテーションタスクのためのPASCAL VOCとCityscapesのOFDSを検証する。
実験により、画像レベルの表現を用いた先行手法は、ランダム選択を一貫して上回らないことを示した。
対照的にOFDSは、不均衡なクラス分散を伴うシナリオにおいて、すべてのベースラインよりも大幅に改善された、最先端のパフォーマンスを一貫して達成します。
さらに、OFDSが選択した人ラベルサブセットを微調整する前に、全データセット上でオートラベルによる事前トレーニングを行うことにより、最終的なパフォーマンスがさらに向上することを示した。
関連論文リスト
- Multi-clue Consistency Learning to Bridge Gaps Between General and Oriented Object in Semi-supervised Detection [26.486535389258965]
半教師あり学習における汎用物体検出とオブジェクト指向物体検出の3つのギャップを実験的に発見する。
本稿では,これらのギャップを埋めるために,MCL(Multi-clue Consistency Learning)フレームワークを提案する。
提案したMCLは,半教師付きオブジェクト指向物体検出タスクにおいて最先端の性能を実現することができる。
論文 参考訳(メタデータ) (2024-07-08T13:14:25Z) - Generalized Category Discovery with Clustering Assignment Consistency [56.92546133591019]
一般化圏発見(GCD)は、最近提案されたオープンワールドタスクである。
クラスタリングの一貫性を促進するための協調学習ベースのフレームワークを提案する。
提案手法は,3つの総合的なベンチマークと3つのきめ細かい視覚認識データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2023-10-30T00:32:47Z) - Two-Step Active Learning for Instance Segmentation with Uncertainty and
Diversity Sampling [20.982992381790034]
本研究では,不確実性に基づくサンプリングと多様性に基づくサンプリングを統合したポストホック能動学習アルゴリズムを提案する。
提案アルゴリズムは単純で実装が容易なだけでなく,様々なデータセットに対して優れた性能を実現する。
論文 参考訳(メタデータ) (2023-09-28T03:40:30Z) - ISLE: A Framework for Image Level Semantic Segmentation Ensemble [5.137284292672375]
従来のセマンティックセグメンテーションネットワークは、最先端の予測品質に到達するために、大量のピクセル単位のアノテートラベルを必要とする。
クラスレベルで異なるセマンティックセグメンテーション手法のセットに「擬似ラベル」のアンサンブルを用いるISLEを提案する。
私たちはISLEの個々のコンポーネントよりも2.4%改善しています。
論文 参考訳(メタデータ) (2023-03-14T13:36:36Z) - Novel Class Discovery in Semantic Segmentation [104.30729847367104]
セマンティックにおける新しいクラス発見(NCDSS)について紹介する。
ラベル付き非結合クラスの集合から事前の知識を与えられた新しいクラスを含むラベル付きイメージのセグメンテーションを目的としている。
NCDSSでは、オブジェクトと背景を区別し、画像内の複数のクラスの存在を処理する必要があります。
本稿では,エントロピーに基づく不確実性モデリングと自己学習(EUMS)フレームワークを提案し,ノイズの多い擬似ラベルを克服する。
論文 参考訳(メタデータ) (2021-12-03T13:31:59Z) - Uncertainty-Aware Semi-Supervised Few Shot Segmentation [9.098329723771116]
少ないショットセグメンテーション(FSS)は、いくつかのアノテーション付きサポートサンプルを使用して、クエリ画像中の対象オブジェクトのピクセルレベルの分類を学習することを目的としている。
これは、ターゲットオブジェクトの外観のバリエーションをモデル化し、クエリとサポートイメージの間の多様な視覚的手がかりを限られた情報で表現する必要があるため、難しい。
本研究では,不確実性のあるラベル付き画像から新たなプロトタイプを活用できる半教師付きFSS戦略を提案する。
論文 参考訳(メタデータ) (2021-10-18T00:37:46Z) - Region-level Active Learning for Cluttered Scenes [60.93811392293329]
本稿では,従来の画像レベルのアプローチとオブジェクトレベルのアプローチを一般化した領域レベルのアプローチに仮定する新たな戦略を提案する。
その結果,本手法はラベル付けの労力を大幅に削減し,クラス不均衡や散らかったシーンを生かしたリアルなデータに対する希少なオブジェクト検索を改善することが示唆された。
論文 参考訳(メタデータ) (2021-08-20T14:02:38Z) - Salient Objects in Clutter [130.63976772770368]
本稿では,既存の正当性オブジェクト検出(SOD)データセットの重大な設計バイアスを特定し,対処する。
この設計バイアスは、既存のデータセットで評価した場合、最先端のSODモデルのパフォーマンスの飽和につながった。
我々は,新しい高品質データセットを提案し,前回のsaliencyベンチマークを更新する。
論文 参考訳(メタデータ) (2021-05-07T03:49:26Z) - A Few-Shot Sequential Approach for Object Counting [63.82757025821265]
画像中のオブジェクトに逐次出席するクラスアテンション機構を導入し,それらの特徴を抽出する。
提案手法は点レベルのアノテーションに基づいて訓練され,モデルのクラス依存的・クラス依存的側面を乱す新しい損失関数を用いる。
本稿では,FSODやMS COCOなど,さまざまなオブジェクトカウント/検出データセットについて報告する。
論文 参考訳(メタデータ) (2020-07-03T18:23:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。