論文の概要: Single-Pass Object-Focused Data Selection
- arxiv url: http://arxiv.org/abs/2412.10032v2
- Date: Wed, 04 Jun 2025 17:06:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-05 16:24:48.791735
- Title: Single-Pass Object-Focused Data Selection
- Title(参考訳): シングルパスオブジェクトフォーカスデータ選択
- Authors: Niclas Popp, Dan Zhang, Jan Hendrik Metzen, Matthias Hein, Lukas Schott,
- Abstract要約: 同時にアノテートすべきすべてのデータを選択するプロセスを参照して,シングルパスデータ選択に着目する。
シングルパスデータ選択の以前の方法は画像レベルの表現に依存しており、オブジェクトの検出とセグメンテーションのランダム選択を確実に上回らなかった。
我々は,基礎モデルからオブジェクトレベルの特徴を活用し,対象クラスのセマンティックカバレッジを確保するオブジェクト焦点データ選択(OFDS)を提案する。
- 参考スコア(独自算出の注目度): 38.062117168168264
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: While unlabeled image data is often plentiful, the costs of high-quality labels pose an important practical challenge: Which images should one select for labeling to use the annotation budget for a particular target task most effectively? To address this problem, we focus on single-pass data selection, which refers to the process of selecting all data to be annotated at once before training a downstream model. Prior methods for single-pass data selection rely on image-level representations and fail to reliably outperform random selection for object detection and segmentation. We propose Object-Focused Data Selection (OFDS) which leverages object-level features from foundation models and ensures semantic coverage of all target classes. In extensive experiments across tasks and target domains, OFDS consistently outperforms random selection and all baselines. The best results for constrained annotation budgets are obtained by combining human labels from OFDS with autolabels from foundation models. Moreover, using OFDS to select the initial labeled set for active learning yields consistent improvements
- Abstract(参考訳): ラベル付けされていない画像データは多用されることが多いが、高品質なラベルのコストは重要な課題となる。
この問題に対処するために、ダウンストリームモデルをトレーニングする前に、一度にアノテートすべきすべてのデータを選択するプロセスを参照して、シングルパスデータ選択に焦点を当てる。
シングルパスデータ選択の以前の方法は画像レベルの表現に依存しており、オブジェクトの検出とセグメンテーションのランダム選択を確実に上回らなかった。
我々は,基礎モデルからオブジェクトレベルの特徴を活用し,対象クラスのセマンティックカバレッジを確保するオブジェクト焦点データ選択(OFDS)を提案する。
タスクとターゲットドメインにわたる広範な実験において、OFDSはランダム選択とすべてのベースラインを一貫して上回る。
制約付きアノテーション予算の最良の結果は、OFDSの人間ラベルと基礎モデルのオートラベルを組み合わせることで得られる。
さらに、アクティブ学習のための初期ラベル付き集合の選択にOFDSを使用すると、一貫した改善がなされる。
関連論文リスト
- Multi-clue Consistency Learning to Bridge Gaps Between General and Oriented Object in Semi-supervised Detection [26.486535389258965]
半教師あり学習における汎用物体検出とオブジェクト指向物体検出の3つのギャップを実験的に発見する。
本稿では,これらのギャップを埋めるために,MCL(Multi-clue Consistency Learning)フレームワークを提案する。
提案したMCLは,半教師付きオブジェクト指向物体検出タスクにおいて最先端の性能を実現することができる。
論文 参考訳(メタデータ) (2024-07-08T13:14:25Z) - Generalized Category Discovery with Clustering Assignment Consistency [56.92546133591019]
一般化圏発見(GCD)は、最近提案されたオープンワールドタスクである。
クラスタリングの一貫性を促進するための協調学習ベースのフレームワークを提案する。
提案手法は,3つの総合的なベンチマークと3つのきめ細かい視覚認識データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2023-10-30T00:32:47Z) - Two-Step Active Learning for Instance Segmentation with Uncertainty and
Diversity Sampling [20.982992381790034]
本研究では,不確実性に基づくサンプリングと多様性に基づくサンプリングを統合したポストホック能動学習アルゴリズムを提案する。
提案アルゴリズムは単純で実装が容易なだけでなく,様々なデータセットに対して優れた性能を実現する。
論文 参考訳(メタデータ) (2023-09-28T03:40:30Z) - ISLE: A Framework for Image Level Semantic Segmentation Ensemble [5.137284292672375]
従来のセマンティックセグメンテーションネットワークは、最先端の予測品質に到達するために、大量のピクセル単位のアノテートラベルを必要とする。
クラスレベルで異なるセマンティックセグメンテーション手法のセットに「擬似ラベル」のアンサンブルを用いるISLEを提案する。
私たちはISLEの個々のコンポーネントよりも2.4%改善しています。
論文 参考訳(メタデータ) (2023-03-14T13:36:36Z) - Novel Class Discovery in Semantic Segmentation [104.30729847367104]
セマンティックにおける新しいクラス発見(NCDSS)について紹介する。
ラベル付き非結合クラスの集合から事前の知識を与えられた新しいクラスを含むラベル付きイメージのセグメンテーションを目的としている。
NCDSSでは、オブジェクトと背景を区別し、画像内の複数のクラスの存在を処理する必要があります。
本稿では,エントロピーに基づく不確実性モデリングと自己学習(EUMS)フレームワークを提案し,ノイズの多い擬似ラベルを克服する。
論文 参考訳(メタデータ) (2021-12-03T13:31:59Z) - Uncertainty-Aware Semi-Supervised Few Shot Segmentation [9.098329723771116]
少ないショットセグメンテーション(FSS)は、いくつかのアノテーション付きサポートサンプルを使用して、クエリ画像中の対象オブジェクトのピクセルレベルの分類を学習することを目的としている。
これは、ターゲットオブジェクトの外観のバリエーションをモデル化し、クエリとサポートイメージの間の多様な視覚的手がかりを限られた情報で表現する必要があるため、難しい。
本研究では,不確実性のあるラベル付き画像から新たなプロトタイプを活用できる半教師付きFSS戦略を提案する。
論文 参考訳(メタデータ) (2021-10-18T00:37:46Z) - Region-level Active Learning for Cluttered Scenes [60.93811392293329]
本稿では,従来の画像レベルのアプローチとオブジェクトレベルのアプローチを一般化した領域レベルのアプローチに仮定する新たな戦略を提案する。
その結果,本手法はラベル付けの労力を大幅に削減し,クラス不均衡や散らかったシーンを生かしたリアルなデータに対する希少なオブジェクト検索を改善することが示唆された。
論文 参考訳(メタデータ) (2021-08-20T14:02:38Z) - Salient Objects in Clutter [130.63976772770368]
本稿では,既存の正当性オブジェクト検出(SOD)データセットの重大な設計バイアスを特定し,対処する。
この設計バイアスは、既存のデータセットで評価した場合、最先端のSODモデルのパフォーマンスの飽和につながった。
我々は,新しい高品質データセットを提案し,前回のsaliencyベンチマークを更新する。
論文 参考訳(メタデータ) (2021-05-07T03:49:26Z) - A Few-Shot Sequential Approach for Object Counting [63.82757025821265]
画像中のオブジェクトに逐次出席するクラスアテンション機構を導入し,それらの特徴を抽出する。
提案手法は点レベルのアノテーションに基づいて訓練され,モデルのクラス依存的・クラス依存的側面を乱す新しい損失関数を用いる。
本稿では,FSODやMS COCOなど,さまざまなオブジェクトカウント/検出データセットについて報告する。
論文 参考訳(メタデータ) (2020-07-03T18:23:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。