RemDet: Rethinking Efficient Model Design for UAV Object Detection
- URL: http://arxiv.org/abs/2412.10040v2
- Date: Mon, 16 Dec 2024 02:31:03 GMT
- Title: RemDet: Rethinking Efficient Model Design for UAV Object Detection
- Authors: Chen Li, Rui Zhao, Zeyu Wang, Huiying Xu, Xinzhong Zhu,
- Abstract summary: Object detection in Unmanned Aerial Vehicle (UAV) images has emerged as a focal area of research.
Current real-time object detectors are not optimized for UAV images.
We propose a novel detector, RemDet, to address these challenges.
- Score: 12.652666443395528
- License:
- Abstract: Object detection in Unmanned Aerial Vehicle (UAV) images has emerged as a focal area of research, which presents two significant challenges: i) objects are typically small and dense within vast images; ii) computational resource constraints render most models unsuitable for real-time deployment. Current real-time object detectors are not optimized for UAV images, and complex methods designed for small object detection often lack real-time capabilities. To address these challenges, we propose a novel detector, RemDet (Reparameter efficient multiplication Detector). Our contributions are as follows: 1) Rethinking the challenges of existing detectors for small and dense UAV images, and proposing information loss as a design guideline for efficient models. 2) We introduce the ChannelC2f module to enhance small object detection performance, demonstrating that high-dimensional representations can effectively mitigate information loss. 3) We design the GatedFFN module to provide not only strong performance but also low latency, effectively addressing the challenges of real-time detection. Our research reveals that GatedFFN, through the use of multiplication, is more cost-effective than feed-forward networks for high-dimensional representation. 4) We propose the CED module, which combines the advantages of ViT and CNN downsampling to effectively reduce information loss. It specifically enhances context information for small and dense objects. Extensive experiments on large UAV datasets, Visdrone and UAVDT, validate the real-time efficiency and superior performance of our methods. On the challenging UAV dataset VisDrone, our methods not only provided state-of-the-art results, improving detection by more than 3.4%, but also achieve 110 FPS on a single 4090.
Related papers
- Efficient Feature Fusion for UAV Object Detection [9.632727117779178]
Small objects, in particular, occupy small portions of images, making their accurate detection difficult.
Existing multi-scale feature fusion methods address these challenges by aggregating features across different resolutions.
We propose a novel feature fusion framework specifically designed for UAV object detection tasks.
arXiv Detail & Related papers (2025-01-29T20:39:16Z) - Efficient Detection Framework Adaptation for Edge Computing: A Plug-and-play Neural Network Toolbox Enabling Edge Deployment [59.61554561979589]
Edge computing has emerged as a key paradigm for deploying deep learning-based object detection in time-sensitive scenarios.
Existing edge detection methods face challenges: difficulty balancing detection precision with lightweight models, limited adaptability, and insufficient real-world validation.
We propose the Edge Detection Toolbox (ED-TOOLBOX), which utilizes generalizable plug-and-play components to adapt object detection models for edge environments.
arXiv Detail & Related papers (2024-12-24T07:28:10Z) - Efficient Oriented Object Detection with Enhanced Small Object Recognition in Aerial Images [2.9138705529771123]
We present a novel enhancement to the YOLOv8 model, tailored for oriented object detection tasks.
Our model features a wavelet transform-based C2f module for capturing associative features and an Adaptive Scale Feature Pyramid (ASFP) module that leverages P2 layer details.
Our approach provides a more efficient architectural design than DecoupleNet, which has 23.3M parameters, all while maintaining detection accuracy.
arXiv Detail & Related papers (2024-12-17T05:45:48Z) - Effective and Efficient Adversarial Detection for Vision-Language Models via A Single Vector [97.92369017531038]
We build a new laRge-scale Adervsarial images dataset with Diverse hArmful Responses (RADAR)
We then develop a novel iN-time Embedding-based AdveRSarial Image DEtection (NEARSIDE) method, which exploits a single vector that distilled from the hidden states of Visual Language Models (VLMs) to achieve the detection of adversarial images against benign ones in the input.
arXiv Detail & Related papers (2024-10-30T10:33:10Z) - ESOD: Efficient Small Object Detection on High-Resolution Images [36.80623357577051]
Small objects are usually sparsely distributed and locally clustered.
Massive feature extraction computations are wasted on the non-target background area of images.
We propose to reuse the detector's backbone to conduct feature-level object-seeking and patch-slicing.
arXiv Detail & Related papers (2024-07-23T12:21:23Z) - Boost UAV-based Ojbect Detection via Scale-Invariant Feature Disentanglement and Adversarial Learning [18.11107031800982]
We propose to improve single-stage inference accuracy through learning scale-invariant features.
Our approach can effectively improve model accuracy and achieve state-of-the-art (SoTA) performance on two datasets.
arXiv Detail & Related papers (2024-05-24T11:40:22Z) - Visible and Clear: Finding Tiny Objects in Difference Map [50.54061010335082]
We introduce a self-reconstruction mechanism in the detection model, and discover the strong correlation between it and the tiny objects.
Specifically, we impose a reconstruction head in-between the neck of a detector, constructing a difference map of the reconstructed image and the input, which shows high sensitivity to tiny objects.
We further develop a Difference Map Guided Feature Enhancement (DGFE) module to make the tiny feature representation more clear.
arXiv Detail & Related papers (2024-05-18T12:22:26Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Fewer is More: Efficient Object Detection in Large Aerial Images [59.683235514193505]
This paper presents an Objectness Activation Network (OAN) to help detectors focus on fewer patches but achieve more efficient inference and more accurate results.
Using OAN, all five detectors acquire more than 30.0% speed-up on three large-scale aerial image datasets.
We extend our OAN to driving-scene object detection and 4K video object detection, boosting the detection speed by 112.1% and 75.0%, respectively.
arXiv Detail & Related papers (2022-12-26T12:49:47Z) - SALISA: Saliency-based Input Sampling for Efficient Video Object
Detection [58.22508131162269]
We propose SALISA, a novel non-uniform SALiency-based Input SAmpling technique for video object detection.
We show that SALISA significantly improves the detection of small objects.
arXiv Detail & Related papers (2022-04-05T17:59:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.