論文の概要: NetOrchLLM: Mastering Wireless Network Orchestration with Large Language Models
- arxiv url: http://arxiv.org/abs/2412.10107v1
- Date: Fri, 13 Dec 2024 12:48:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-16 15:03:31.797044
- Title: NetOrchLLM: Mastering Wireless Network Orchestration with Large Language Models
- Title(参考訳): NetOrchLLM: 大規模言語モデルによる無線ネットワークオーケストレーションのマスタリング
- Authors: Asmaa Abdallah, Abdullatif Albaseer, Abdulkadir Celik, Mohamed Abdallah, Ahmed M. Eltawil,
- Abstract要約: 大規模言語モデル(LLM)は、洗練された自然言語理解機能を活用することで、様々な領域に革命をもたらした。
本稿では、様々な無線固有モデルをシームレスにオーケストレーションする無線ネットワークORCHestrator LLMフレームワークであるNetORCHLLMを提案する。
アプローチの実用性を示す包括的なフレームワークが導入された。
- 参考スコア(独自算出の注目度): 11.015852090523229
- License:
- Abstract: The transition to 6G networks promises unprecedented advancements in wireless communication, with increased data rates, ultra-low latency, and enhanced capacity. However, the complexity of managing and optimizing these next-generation networks presents significant challenges. The advent of large language models (LLMs) has revolutionized various domains by leveraging their sophisticated natural language understanding capabilities. However, the practical application of LLMs in wireless network orchestration and management remains largely unexplored. Existing literature predominantly offers visionary perspectives without concrete implementations, leaving a significant gap in the field. To address this gap, this paper presents NETORCHLLM, a wireless NETwork ORCHestrator LLM framework that uses LLMs to seamlessly orchestrate diverse wireless-specific models from wireless communication communities using their language understanding and generation capabilities. A comprehensive framework is introduced, demonstrating the practical viability of our approach and showcasing how LLMs can be effectively harnessed to optimize dense network operations, manage dynamic environments, and improve overall network performance. NETORCHLLM bridges the theoretical aspirations of prior research with practical, actionable solutions, paving the way for future advancements in integrating generative AI technologies within the wireless communications sector.
- Abstract(参考訳): 6Gネットワークへの移行は、データレートの向上、超低レイテンシ、容量向上など、無線通信における前例のない進歩を約束する。
しかし、これらの次世代ネットワークの管理と最適化の複雑さは、大きな課題を呈している。
大規模言語モデル(LLM)の出現は、その洗練された自然言語理解能力を活用することで、様々な領域に革命をもたらした。
しかし、無線ネットワークのオーケストレーションと管理におけるLLMの実践的応用は、いまだに未検討である。
現存する文献は、具体的実装のない幻想的な視点を主に提供し、この分野において大きなギャップを残している。
このギャップに対処するため,本論文では,LLMを用いた無線ネットワークORCHestrator LLMフレームワークであるNetORCHLLMを提案し,その言語理解と生成機能を用いて,無線通信コミュニティから多様な無線固有モデルをシームレスにオーケストレーションする。
網羅的なフレームワークを導入し,LLMを高密度ネットワーク操作の最適化,動的環境の管理,ネットワーク全体の性能向上に効果的に活用する方法を示した。
NETORCHLLMは、実用的で実行可能なソリューションによる事前研究の理論的願望を橋渡しし、ワイヤレス通信セクターにおける生成AI技術の統合における将来の進歩の道を開く。
関連論文リスト
- AI Flow at the Network Edge [58.31090055138711]
AI Flowは、デバイス、エッジノード、クラウドサーバ間で利用可能な異種リソースを共同で活用することで、推論プロセスを合理化するフレームワークである。
この記事では、AI Flowのモチベーション、課題、原則を特定するためのポジションペーパーとして機能する。
論文 参考訳(メタデータ) (2024-11-19T12:51:17Z) - WDMoE: Wireless Distributed Mixture of Experts for Large Language Models [68.45482959423323]
大規模言語モデル(LLM)は様々な自然言語処理タスクにおいて大きな成功を収めた。
本稿では,無線ネットワーク上での基地局(BS)およびモバイルデバイスにおけるエッジサーバ間のLLMの協調展開を実現するために,無線分散Mixture of Experts(WDMoE)アーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-11-11T02:48:00Z) - WirelessAgent: Large Language Model Agents for Intelligent Wireless Networks [16.722524706176767]
無線ネットワークは、規模と複雑さの増大により、ますます課題に直面している。
これらの課題は、特に今後の6Gネットワークにおいて、高度なAI駆動戦略の必要性を浮き彫りにしている。
我々は、無線ネットワークにおける複雑なタスクを管理できるAIエージェントを開発するための新しいアプローチであるWirelessAgentを紹介する。
論文 参考訳(メタデータ) (2024-09-12T11:48:01Z) - WirelessLLM: Empowering Large Language Models Towards Wireless Intelligence [16.722524706176767]
大規模言語モデル(LLM)は、無線通信システムに革命をもたらす可能性への関心を喚起している。
無線システム用LLMの既存の研究は、通信言語理解の直接的な応用に限られている。
本稿では,無線通信ネットワークのユニークな課題と要件に対処するため,LLMの適応と拡張のための総合的なフレームワークである WirelessLLM を提案する。
論文 参考訳(メタデータ) (2024-05-27T11:18:25Z) - Large Language Models (LLMs) Assisted Wireless Network Deployment in Urban Settings [0.21847754147782888]
大きな言語モデル(LLM)は、言語理解と人間に似たテキスト生成に革命をもたらした。
本稿では,6G(第6世代)無線通信技術におけるLCMの電力利用技術について検討する。
無線通信におけるネットワーク展開にLLMを利用する新しい強化学習(RL)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-22T05:19:51Z) - WDMoE: Wireless Distributed Large Language Models with Mixture of Experts [65.57581050707738]
我々は,Mixture of Experts (MoE)に基づく無線分散大言語モデル(LLM)パラダイムを提案する。
我々は,基地局(BS)とモバイルデバイスにゲーティングネットワークと先行するニューラルネットワーク層を配置することにより,LLM内のMoE層を分解する。
我々は、モデルの性能とエンドツーエンドのレイテンシの両方を考慮して、専門家の選択ポリシーを設計する。
論文 参考訳(メタデータ) (2024-05-06T02:55:50Z) - NetLLM: Adapting Large Language Models for Networking [36.61572542761661]
我々は,ネットワーク問題を解決するために低努力でLLMの強力な能力を活用するためのコヒーレントな設計を提供する最初のフレームワークであるNetLLMを紹介する。
具体的には、NetLLMはLLMにネットワーク上のマルチモーダルデータを効果的に処理し、タスク固有の回答を効率的に生成する権限を与える。
論文 参考訳(メタデータ) (2024-02-04T04:21:34Z) - Pervasive Machine Learning for Smart Radio Environments Enabled by
Reconfigurable Intelligent Surfaces [56.35676570414731]
Reconfigurable Intelligent Surfaces(RIS)の新たな技術は、スマート無線環境の実現手段として準備されている。
RISは、無線媒体上の電磁信号の伝搬を動的に制御するための、高度にスケーラブルで低コストで、ハードウェア効率が高く、ほぼエネルギーニュートラルなソリューションを提供する。
このような再構成可能な無線環境におけるRISの密配置に関する大きな課題の1つは、複数の準曲面の効率的な構成である。
論文 参考訳(メタデータ) (2022-05-08T06:21:33Z) - Distributed Learning in Wireless Networks: Recent Progress and Future
Challenges [170.35951727508225]
次世代のワイヤレスネットワークは、エッジデバイスが収集するさまざまな種類のデータを分析する多くの機械学習ツールやアプリケーションを可能にする。
エッジデバイスが生データ交換なしでMLモデルを協調的にトレーニングできるようにする手段として,分散学習と推論技術が提案されている。
本稿では,ワイヤレスエッジネットワーク上で分散学習を効率的に効果的に展開する方法を包括的に研究する。
論文 参考訳(メタデータ) (2021-04-05T20:57:56Z) - Intelligent Reflecting Surface Aided Wireless Communications: A Tutorial [64.77665786141166]
インテリジェント反射面(Intelligent Reflecting Surface、IRS)は、無線ネットワークにおける電波伝搬を工学する技術である。
IRSは無線チャネルを動的に変更して通信性能を向上させることができる。
その大きな可能性にもかかわらず、IRSは無線ネットワークに効率的に統合されるための新たな課題に直面している。
論文 参考訳(メタデータ) (2020-07-06T13:59:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。