Optimal Bounds for Private Minimum Spanning Trees via Input Perturbation
- URL: http://arxiv.org/abs/2412.10130v1
- Date: Fri, 13 Dec 2024 13:22:39 GMT
- Title: Optimal Bounds for Private Minimum Spanning Trees via Input Perturbation
- Authors: Rasmus Pagh, Lukas Retschmeier, Hao Wu, Hanwen Zhang,
- Abstract summary: We study the problem of privately releasing an approximate minimum spanning tree (MST)
Existing private MST algorithms face a trade-off, sacrificing either computational efficiency or accuracy.
We show that it is possible to get the best of both worlds: With a suitable random perturbation of the input that does not suffice to make the weight vector private, the result will be private and achieves a state-of-the-art error guarantee.
- Score: 11.345141417475956
- License:
- Abstract: We study the problem of privately releasing an approximate minimum spanning tree (MST). Given a graph $G = (V, E, \vec{W})$ where $V$ is a set of $n$ vertices, $E$ is a set of $m$ undirected edges, and $ \vec{W} \in \mathbb{R}^{|E|} $ is an edge-weight vector, our goal is to publish an approximate MST under edge-weight differential privacy, as introduced by Sealfon in PODS 2016, where $V$ and $E$ are considered public and the weight vector is private. Our neighboring relation is $\ell_\infty$-distance on weights: for a sensitivity parameter $\Delta_\infty$, graphs $ G = (V, E, \vec{W}) $ and $ G' = (V, E, \vec{W}') $ are neighboring if $\|\vec{W}-\vec{W}'\|_\infty \leq \Delta_\infty$. Existing private MST algorithms face a trade-off, sacrificing either computational efficiency or accuracy. We show that it is possible to get the best of both worlds: With a suitable random perturbation of the input that does not suffice to make the weight vector private, the result of any non-private MST algorithm will be private and achieves a state-of-the-art error guarantee. Furthermore, by establishing a connection to Private Top-k Selection [Steinke and Ullman, FOCS '17], we give the first privacy-utility trade-off lower bound for MST under approximate differential privacy, demonstrating that the error magnitude, $\tilde{O}(n^{3/2})$, is optimal up to logarithmic factors. That is, our approach matches the time complexity of any non-private MST algorithm and at the same time achieves optimal error. We complement our theoretical treatment with experiments that confirm the practicality of our approach.
Related papers
- Optimized Tradeoffs for Private Prediction with Majority Ensembling [59.99331405291337]
We introduce the Data-dependent Randomized Response Majority (DaRRM) algorithm.
DaRRM is parameterized by a data-dependent noise function $gamma$, and enables efficient utility optimization over the class of all private algorithms.
We show that DaRRM provably enjoys a privacy gain of a factor of 2 over common baselines, with fixed utility.
arXiv Detail & Related papers (2024-11-27T00:48:48Z) - Faster Private Minimum Spanning Trees [11.72102598708538]
We present a new differentially private MST algorithm that matches the utility of existing in-place methods while running in time.
We present a data structure that allows us to sample a noisy minimum weight edge among at most $O(n2)$ cut edges in $O(sqrtn log n)$ time.
arXiv Detail & Related papers (2024-08-13T16:00:30Z) - Private Zeroth-Order Nonsmooth Nonconvex Optimization [41.05664717242051]
We introduce a new zeroth-order algorithm for private optimization on non and nonsmooth objectives.
Given a dataset size $M$, our algorithm finds a privacy differential.
Although the objective is not smooth, we have privacy.
for free whenever $tdepsilon$.
arXiv Detail & Related papers (2024-06-27T23:57:01Z) - Private Online Prediction from Experts: Separations and Faster Rates [74.52487417350221]
Online prediction from experts is a fundamental problem in machine learning and several works have studied this problem under privacy constraints.
We propose and analyze new algorithms for this problem that improve over the regret bounds of the best existing algorithms for non-adaptive adversaries.
arXiv Detail & Related papers (2022-10-24T18:40:19Z) - Scalable Differentially Private Clustering via Hierarchically Separated
Trees [82.69664595378869]
We show that our method computes a solution with cost at most $O(d3/2log n)cdot OPT + O(k d2 log2 n / epsilon2)$, where $epsilon$ is the privacy guarantee.
Although the worst-case guarantee is worse than that of state of the art private clustering methods, the algorithm we propose is practical.
arXiv Detail & Related papers (2022-06-17T09:24:41Z) - Private Stochastic Convex Optimization: Optimal Rates in $\ell_1$
Geometry [69.24618367447101]
Up to logarithmic factors the optimal excess population loss of any $(varepsilon,delta)$-differently private is $sqrtlog(d)/n + sqrtd/varepsilon n.$
We show that when the loss functions satisfy additional smoothness assumptions, the excess loss is upper bounded (up to logarithmic factors) by $sqrtlog(d)/n + (log(d)/varepsilon n)2/3.
arXiv Detail & Related papers (2021-03-02T06:53:44Z) - Near-Optimal Algorithms for Differentially Private Online Learning in a Stochastic Environment [7.4288915613206505]
We study differentially private online learning problems in a environment under both bandit and full information feedback.
For differentially private bandits, we propose both UCB and Thompson Sampling-based algorithms that are anytime and achieve the optimal $O left(sum_j: Delta_j>0 fracln(T)min leftDelta_j, epsilon right right)$ minimax lower bound.
For the same differentially private full information setting, we also present an $epsilon$-differentially
arXiv Detail & Related papers (2021-02-16T02:48:16Z) - Optimal Regret Algorithm for Pseudo-1d Bandit Convex Optimization [51.23789922123412]
We study online learning with bandit feedback (i.e. learner has access to only zeroth-order oracle) where cost/reward functions admit a "pseudo-1d" structure.
We show a lower bound of $min(sqrtdT, T3/4)$ for the regret of any algorithm, where $T$ is the number of rounds.
We propose a new algorithm sbcalg that combines randomized online gradient descent with a kernelized exponential weights method to exploit the pseudo-1d structure effectively.
arXiv Detail & Related papers (2021-02-15T08:16:51Z) - A bounded-noise mechanism for differential privacy [3.9596068699962323]
We output an approximation of the average $frac1nsum_i=1n vecx(i)$ of vectors $vecx(i) in [0,1]k$, while preserving the privacy with respect to any $vecx(i)$.
We present an $(epsilon,delta)$-private mechanism with optimal $ell_infty$ error for most values of $delta$.
arXiv Detail & Related papers (2020-12-07T16:03:21Z) - Locally Private Hypothesis Selection [96.06118559817057]
We output a distribution from $mathcalQ$ whose total variation distance to $p$ is comparable to the best such distribution.
We show that the constraint of local differential privacy incurs an exponential increase in cost.
Our algorithms result in exponential improvements on the round complexity of previous methods.
arXiv Detail & Related papers (2020-02-21T18:30:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.