論文の概要: Data Integration with Fusion Searchlight: Classifying Brain States from Resting-state fMRI
- arxiv url: http://arxiv.org/abs/2412.10161v1
- Date: Fri, 13 Dec 2024 14:24:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-16 15:01:39.310360
- Title: Data Integration with Fusion Searchlight: Classifying Brain States from Resting-state fMRI
- Title(参考訳): Fusion Searchlightによるデータ統合:静止状態fMRIからの脳状態の分類
- Authors: Simon Wein, Marco Riebel, Lisa-Marie Brunner, Caroline Nothdurfter, Rainer Rupprecht, Jens V. Schwarzbach,
- Abstract要約: 本稿では,異なる静止状態fMRI計測値に含まれる相補的な情報を組み合わせるための融合サーチライトフレームワークを提案する。
説明可能なAIによって、各メトリックのデコードに対する差分の影響を再構築できることを示します。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Spontaneous neural activity observed in resting-state fMRI is characterized by complex spatio-temporal dynamics. Different measures related to local and global brain connectivity and fluctuations in low-frequency amplitudes can quantify individual aspects of these neural dynamics. Even though such measures are derived from the same functional signals, they are often evaluated separately, neglecting their interrelations and potentially reducing the analysis sensitivity. In our study, we present a fusion searchlight (FuSL) framework to combine the complementary information contained in different resting-state fMRI metrics and demonstrate how this can improve the decoding of brain states. Moreover, we show how explainable AI allows us to reconstruct the differential impact of each metric on the decoding, which additionally increases spatial specificity of searchlight analysis. In general, this framework can be adapted to combine information derived from different imaging modalities or experimental conditions, offering a versatile and interpretable tool for data fusion in neuroimaging.
- Abstract(参考訳): 静止状態fMRIで観察される自発神経活動は、複雑な時空間ダイナミクスによって特徴づけられる。
低周波振幅における局所的および大域的な脳の接続とゆらぎに関する異なる測定は、これらの神経力学の個々の側面を定量化することができる。
このような測定は、同じ機能信号から導かれるが、しばしば別々に評価され、相互関係を無視し、分析感度を低下させる可能性がある。
本研究では、異なる静止状態fMRI測定値に含まれる相補的な情報を組み合わせて、融合サーチライト(FuSL)フレームワークを提案し、これが脳状態の復号化をいかに改善できるかを実証する。
さらに、説明可能なAIによって、各メトリックのデコードに対する差分の影響を再構築し、検索光解析の空間的特異性を高める方法を示す。
一般に、このフレームワークは、異なるイメージングモードまたは実験条件から派生した情報を組み合わせて、ニューロイメージングにおけるデータ融合のための汎用的で解釈可能なツールを提供するように適応することができる。
関連論文リスト
- Copula-Linked Parallel ICA: A Method for Coupling Structural and Functional MRI brain Networks [0.5277756703318045]
機能的MRI(fMRI)と構造的MRI(sMRI)を融合させる以前の研究では、このアプローチの利点が示されている。
我々は、深層学習フレームワーク、コプラと独立成分分析(ICA)を組み合わせた新しい融合法、コプラリンク並列ICA(CLiP-ICA)を開発した。
CLiP-ICAは、脳、感覚運動、視覚、認知制御、デフォルトモードネットワークなど、強い結合と弱い結合sMRIとfMRIネットワークの両方を効果的にキャプチャする。
論文 参考訳(メタデータ) (2024-10-14T01:35:41Z) - Integrated Brain Connectivity Analysis with fMRI, DTI, and sMRI Powered by Interpretable Graph Neural Networks [17.063133885403154]
我々は, 磁気共鳴イメージング, 拡散テンソルイメージング, 構造MRIを結合構造に統合した。
提案手法は,ニューラルネットワークの重み付けにマスキング戦略を導入し,マルチモーダル画像データの総合的アマルガメーションを容易にする。
このモデルは、ヒューマンコネクトームプロジェクト(Human Connectome Project)の開発研究に応用され、若年期のマルチモーダルイメージングと認知機能との関係を明らかにする。
論文 参考訳(メタデータ) (2024-08-26T13:16:42Z) - MindFormer: Semantic Alignment of Multi-Subject fMRI for Brain Decoding [50.55024115943266]
本稿では,MindFormer を用いたマルチオブジェクト fMRI 信号のセマンティックアライメント手法を提案する。
このモデルは、fMRIから画像生成のための安定拡散モデルや、fMRIからテキスト生成のための大規模言語モデル(LLM)の条件付けに使用できるfMRI条件付き特徴ベクトルを生成するように設計されている。
実験の結果,MindFormerは意味的に一貫した画像とテキストを異なる主題にわたって生成することがわかった。
論文 参考訳(メタデータ) (2024-05-28T00:36:25Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - Psychometry: An Omnifit Model for Image Reconstruction from Human Brain Activity [60.983327742457995]
人間の脳活動から見るイメージを再構築することで、人間とコンピュータのビジョンをBrain-Computer Interfaceを通して橋渡しする。
異なる被験者から得られた機能的磁気共鳴イメージング(fMRI)による画像再構成のための全能モデルであるサイコメトリを考案した。
論文 参考訳(メタデータ) (2024-03-29T07:16:34Z) - K-Space-Aware Cross-Modality Score for Synthesized Neuroimage Quality
Assessment [71.27193056354741]
クロスモダリティな医用画像合成をどう評価するかという問題は、ほとんど解明されていない。
本稿では,この課題の進展を促すため,新しい指標K-CROSSを提案する。
K-CROSSは、トレーニング済みのマルチモードセグメンテーションネットワークを使用して、病変の位置を予測する。
論文 参考訳(メタデータ) (2023-07-10T01:26:48Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
多チャンネル脳波データからいくつかの皮質下領域の活性を回復するための解釈可能な領域基底解を提案する。
我々は,皮質下核の血行動態信号の頭皮脳波予測の空間的・時間的パターンを復元する。
論文 参考訳(メタデータ) (2022-10-23T15:11:37Z) - Learning shared neural manifolds from multi-subject FMRI data [13.093635609349874]
MRMD-AEmaniと呼ばれる,複数の被験者から共通の埋め込みを実験で学習するニューラルネットワークを提案する。
学習した共通空間は、テンポラル多様体(トレーニング中に見えない新しい点をマッピングできる)を表し、目に見えない時間点の刺激特徴の分類を改善する。
このフレームワークは、将来的には脳-コンピュータインタフェース(BCI)トレーニングなど、多くのダウンストリームアプリケーションに応用できると考えています。
論文 参考訳(メタデータ) (2021-12-22T23:08:39Z) - Deep Representational Similarity Learning for analyzing neural
signatures in task-based fMRI dataset [81.02949933048332]
本稿では、表現類似度分析(RSA)の深部拡張であるDRSL(Deep Representational similarity Learning)を開発する。
DRSLは、多数の被験者を持つfMRIデータセットにおける様々な認知タスク間の類似性を分析するのに適している。
論文 参考訳(メタデータ) (2020-09-28T18:30:14Z) - Incorporating structured assumptions with probabilistic graphical models
in fMRI data analysis [5.23143327587266]
我々は、fMRI研究の様々な領域で最近開発されたアルゴリズムについてレビューする。
これらのアルゴリズムも同様にfMRIの課題に取り組む。
認知神経科学における明示的モデル構築のより広範な採用を提唱する。
論文 参考訳(メタデータ) (2020-05-11T06:32:54Z) - Mapping individual differences in cortical architecture using multi-view
representation learning [0.0]
本稿では,タスクfMRIと安静状態fMRIで計測されたアクティベーションと接続性に基づく情報を組み合わせて,新しい機械学習手法を提案する。
マルチビューディープ・オートエンコーダは、2つのfMRIモダリティを、患者を特徴づけるスカラースコアを推測するために予測モデルが訓練されたジョイント表現空間に融合させるように設計されている。
論文 参考訳(メタデータ) (2020-04-01T09:01:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。