論文の概要: Efficient Generative Modeling with Residual Vector Quantization-Based Tokens
- arxiv url: http://arxiv.org/abs/2412.10208v1
- Date: Fri, 13 Dec 2024 15:31:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-16 15:37:49.013307
- Title: Efficient Generative Modeling with Residual Vector Quantization-Based Tokens
- Title(参考訳): 残留ベクトル量子化に基づく効率的な生成モデル
- Authors: Jaehyeon Kim, Taehong Moon, Keon Lee, Jaewoong Cho,
- Abstract要約: ResGenは、サンプリング速度を損なうことなく高忠実度サンプルを生成する効率的なRVQベースの離散拡散モデルである。
我々は,ImageNet 256x256における条件付き画像生成とゼロショット音声合成の2つの課題に対して,提案手法の有効性と一般化性を検証する。
RVQの深さを拡大するにつれて、我々の生成モデルは、同様の大きさのベースラインモデルと比較して、より優れた生成忠実度またはより高速なサンプリング速度を示す。
- 参考スコア(独自算出の注目度): 5.949779668853557
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We explore the use of Residual Vector Quantization (RVQ) for high-fidelity generation in vector-quantized generative models. This quantization technique maintains higher data fidelity by employing more in-depth tokens. However, increasing the token number in generative models leads to slower inference speeds. To this end, we introduce ResGen, an efficient RVQ-based discrete diffusion model that generates high-fidelity samples without compromising sampling speed. Our key idea is a direct prediction of vector embedding of collective tokens rather than individual ones. Moreover, we demonstrate that our proposed token masking and multi-token prediction method can be formulated within a principled probabilistic framework using a discrete diffusion process and variational inference. We validate the efficacy and generalizability of the proposed method on two challenging tasks across different modalities: conditional image generation} on ImageNet 256x256 and zero-shot text-to-speech synthesis. Experimental results demonstrate that ResGen outperforms autoregressive counterparts in both tasks, delivering superior performance without compromising sampling speed. Furthermore, as we scale the depth of RVQ, our generative models exhibit enhanced generation fidelity or faster sampling speeds compared to similarly sized baseline models. The project page can be found at https://resgen-genai.github.io
- Abstract(参考訳): ベクトル量子化モデルにおける高忠実度生成における残留ベクトル量子化(RVQ)の利用について検討する。
この量子化技術は、より深いトークンを用いることにより、より高いデータの忠実性を維持する。
しかし、生成モデルにおけるトークン数の増加は推論速度を遅くする。
そこで本稿では,サンプリング速度を損なうことなく高忠実度サンプルを生成する,効率的なRVQに基づく離散拡散モデルResGenを紹介する。
私たちのキーとなるアイデアは、個々のトークンではなく、集合トークンのベクトル埋め込みの直接予測です。
さらに, トークンマスキングとマルチトークン予測法は, 離散拡散過程と変分推論を用いて, 原理的確率的枠組み内で定式化できることを実証した。
本研究では,画像Net 256x256における条件付き画像生成とゼロショット音声合成の2つの課題に対して,提案手法の有効性と一般化性を検証した。
実験結果から、ResGenは両方のタスクにおいて自己回帰よりも優れており、サンプリング速度を損なうことなく優れたパフォーマンスを実現していることがわかった。
さらに、RVQの深さを拡大するにつれて、同規模のベースラインモデルと比較して、生成精度が向上し、サンプリング速度が高速化される。
プロジェクトのページはhttps://resgen-genai.github.ioにある。
関連論文リスト
- D2C: Unlocking the Potential of Continuous Autoregressive Image Generation with Discrete Tokens [80.75893450536577]
モデル生成能力を向上させる新しい2段階法であるD2Cを提案する。
第1段階では、小さな離散値発生器を用いて粗粒度画像特徴を表す離散値トークンをサンプリングする。
第2段階では、離散トークンシーケンスに基づいて、きめ細かい画像特徴を表す連続値トークンを学習する。
論文 参考訳(メタデータ) (2025-03-21T13:58:49Z) - Bridging Continuous and Discrete Tokens for Autoregressive Visual Generation [63.89280381800457]
本稿では,離散トークンのモデリングをシンプルに保ちながら,連続トークンの強力な表現能力を維持するTokenBridgeを提案する。
本稿では,各特徴次元を独立に離散化し,軽量な自己回帰予測機構と組み合わせた次元ワイド量子化戦略を提案する。
提案手法は,標準的なカテゴリー予測を用いて,連続的手法と同等に再現および生成品質を実現する。
論文 参考訳(メタデータ) (2025-03-20T17:59:59Z) - Frequency Autoregressive Image Generation with Continuous Tokens [31.833852108014312]
本稿では、周波数プログレッシブ自己回帰(textbfFAR)パラダイムを導入し、連続トークン化器を用いてFARをインスタンス化する。
我々は、ImageNetデータセットの総合的な実験を通して、FARの有効性を実証する。
論文 参考訳(メタデータ) (2025-03-07T10:34:04Z) - Parallelized Autoregressive Visual Generation [65.9579525736345]
本稿では,並列化された自己回帰視覚生成のための簡易かつ効果的な手法を提案する。
本手法は,画像生成タスクと映像生成タスクの両方において,最大9.5倍の高速化を実現し,品質劣化を最小限に抑えた3.6倍の高速化を実現する。
論文 参考訳(メタデータ) (2024-12-19T17:59:54Z) - Faster Language Models with Better Multi-Token Prediction Using Tensor Decomposition [5.575078692353885]
本稿では, 精度を損なうことなくサンプリング効率を向上させることを目的とした, 変圧器のマルチトークン予測のための新しいモデルを提案する。
階数=r$標準確率分解に一般化することにより、複数のトークンを同時に予測する改良されたモデルを開発する。
論文 参考訳(メタデータ) (2024-10-23T11:06:36Z) - LANTERN: Accelerating Visual Autoregressive Models with Relaxed Speculative Decoding [30.630803933771865]
実験により,提案手法が投機的復号化よりも大幅に高速化されたことを示す。
LANTERNは、greedyデコーディングやランダムサンプリングと比較して、$mathbf1.75times$と$mathbf1.76times$のスピードアップを増大させる。
論文 参考訳(メタデータ) (2024-10-04T12:21:03Z) - Accelerating Auto-regressive Text-to-Image Generation with Training-free Speculative Jacobi Decoding [60.188309982690335]
本稿では,自動回帰テキスト・画像生成を高速化するために,訓練不要な確率的並列デコーディングアルゴリズムであるSpeculative Jacobi Decoding (SJD)を提案する。
確率収束基準を導入することにより、サンプリングベースのトークン復号におけるランダム性を維持しつつ、自動回帰テキスト・画像生成の推論を高速化する。
論文 参考訳(メタデータ) (2024-10-02T16:05:27Z) - Dynamic-Width Speculative Beam Decoding for Efficient LLM Inference [35.730941605490194]
大規模言語モデル(LLM)は多くの実世界のタスクで優れたパフォーマンスを示している。
投機的復号化は有望な解決策として現れ、より小さな補助モデルを利用して将来のトークンをドラフトしている。
本稿では,ビームサンプリングによる投機的復号化の新たな統合について検討する。
論文 参考訳(メタデータ) (2024-09-25T02:20:42Z) - Promises and Pitfalls of Generative Masked Language Modeling: Theoretical Framework and Practical Guidelines [74.42485647685272]
GMLM(Generative Masked Language Models)に焦点を当てる。
我々は,マルコフ連鎖の入力として使用されるマスキングにより,データ分布の条件付き確率に適合するモデルを訓練し,モデルからサンプルを抽出する。
我々は,T5モデルを並列デコーディングに適応させ,最小品質の犠牲を伴って機械翻訳における2~3倍の高速化を実現した。
論文 参考訳(メタデータ) (2024-07-22T18:00:00Z) - Autoregressive Speech Synthesis without Vector Quantization [135.4776759536272]
We present MELLE, a novel continuous-valued token based language modeling approach for text-to-speech synthesis (TTS)。
MELLEはテキスト条件から直接連続メル-スペクトログラムフレームを自動回帰生成する。
MELLEは、サンプリングベクトル量子化符号の固有の欠陥を回避し、ロバスト性問題を緩和する。
論文 参考訳(メタデータ) (2024-07-11T14:36:53Z) - Parallel Decoding via Hidden Transfer for Lossless Large Language Model Acceleration [54.897493351694195]
本稿では,複数連続するトークンを1つのフォワードパスで同時に復号する,新しい並列復号法,すなわちthithidden Transferを提案する。
加速度測定では,Medusa や Self-Speculative decoding など,単モデル加速技術よりも優れています。
論文 参考訳(メタデータ) (2024-04-18T09:17:06Z) - GE-AdvGAN: Improving the transferability of adversarial samples by
gradient editing-based adversarial generative model [69.71629949747884]
GAN(Generative Adversarial Networks)のような逆生成モデルは、様々な種類のデータを生成するために広く応用されている。
本研究では, GE-AdvGAN という新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-01-11T16:43:16Z) - Variational Bayes image restoration with compressive autoencoders [4.879530644978008]
逆問題の正規化は、計算イメージングにおいて最重要となる。
本研究では,まず,最先端生成モデルの代わりに圧縮型オートエンコーダを提案する。
第2の貢献として、変分ベイズ潜時推定(VBLE)アルゴリズムを導入する。
論文 参考訳(メタデータ) (2023-11-29T15:49:31Z) - ReDi: Efficient Learning-Free Diffusion Inference via Trajectory
Retrieval [68.7008281316644]
ReDiは学習不要なRetrievalベースの拡散サンプリングフレームワークである。
ReDi はモデル推論効率を 2 倍高速化することを示した。
論文 参考訳(メタデータ) (2023-02-05T03:01:28Z) - Latent Autoregressive Source Separation [5.871054749661012]
本稿では,ベクトル量子化遅延自己回帰音源分離(入力信号を構成源にデミックスする)を導入する。
分離法は, 自己回帰モデルが先行するベイズ式に依拠し, 付加トークンの潜在和に対して離散的(非パラメトリック)確率関数を構築した。
論文 参考訳(メタデータ) (2023-01-09T17:32:00Z) - Diffusion Glancing Transformer for Parallel Sequence to Sequence
Learning [52.72369034247396]
モーダリティ拡散プロセスと残差グランシングサンプリングを併用した拡散グランシング変換器を提案する。
DIFFGLATは、自己回帰モデルと非自己回帰モデルの両方と比較して、高速な復号速度を維持しながら、より優れた生成精度を実現する。
論文 参考訳(メタデータ) (2022-12-20T13:36:25Z) - Megapixel Image Generation with Step-Unrolled Denoising Autoencoders [5.145313322824774]
本稿では,サンプルの解像度を高くする手法と,トレーニングとサンプリングの計算要求を低減させる手法の組み合わせを提案する。
例えば、ベクトル量子化GAN(VQ-GAN)、高レベルの損失 - しかし知覚的に重要 - 圧縮 - が可能なベクトル量子化(VQ)モデル、時間ガラストランスフォーマー、高スケールの自己アテンションモデル、非自己回帰(NAR)テキスト生成モデルであるステップ制御型デノイングオートエンコーダ(SUNDAE)などがある。
提案するフレームワークは,高解像度(1024×1024$)までスケールし,(高速で)トレーニングを行う。
論文 参考訳(メタデータ) (2022-06-24T15:47:42Z) - Paraformer: Fast and Accurate Parallel Transformer for
Non-autoregressive End-to-End Speech Recognition [62.83832841523525]
そこで我々はParaformerと呼ばれる高速かつ高精度な並列トランスを提案する。
出力トークンの数を正確に予測し、隠れた変数を抽出する。
10倍以上のスピードアップで、最先端のARトランスフォーマーに匹敵するパフォーマンスを実現することができる。
論文 参考訳(メタデータ) (2022-06-16T17:24:14Z) - High-Fidelity Synthesis with Disentangled Representation [60.19657080953252]
本稿では,不整合学習と高忠実度合成のためのID-GAN(Information-Distillation Generative Adrial Network)を提案する。
提案手法は, VAEモデルを用いて非交叉表現を学習し, 高忠実度合成のためのGAN生成器に追加のニュアンス変数で学習表現を蒸留する。
単純さにもかかわらず,提案手法は高効率であり,不整合表現を用いた最先端の手法に匹敵する画像生成品質を実現する。
論文 参考訳(メタデータ) (2020-01-13T14:39:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。