論文の概要: RowDetr: End-to-End Crop Row Detection Using Polynomials
- arxiv url: http://arxiv.org/abs/2412.10525v3
- Date: Mon, 06 Oct 2025 17:12:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-07 14:28:09.181914
- Title: RowDetr: End-to-End Crop Row Detection Using Polynomials
- Title(参考訳): RowDetr:ポリノミアルを用いたエンド・ツー・エンド作物のロー検出
- Authors: Rahul Harsha Cheppally, Ajay Sharda,
- Abstract要約: RowDetrは、精密農業における行検出のための効率的なエンドツーエンドのトランスフォーマーベースのニューラルネットワークである。
システムは優れた性能を示し、F1スコアは0.74まで、レーン位置偏差は0.405まで低下した。
- 参考スコア(独自算出の注目度): 0.6354455153996315
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Crop row detection enables autonomous robots to navigate in gps denied environments. Vision based strategies often struggle in the environments due to gaps, curved crop rows and require post-processing steps. Furthermore, labeling crop rows in under the canopy environments accurately is very difficult due to occlusions. This study introduces RowDetr, an efficient end-to-end transformer-based neural network for crop row detection in precision agriculture. RowDetr leverages a lightweight backbone and a hybrid encoder to model straight, curved, or occluded crop rows with high precision. Central to the architecture is a novel polynomial representation that enables direct parameterization of crop rows, eliminating computationally expensive post-processing. Key innovations include a PolySampler module and multi-scale deformable attention, which work together with PolyOptLoss, an energy-based loss function designed to optimize geometric alignment between predicted and the annotated crop rows, while also enhancing robustness against labeling noise. RowDetr was evaluated against other state-of-the-art end-to-end crop row detection methods like AgroNav and RolColAttention on a diverse dataset of 6,962 high-resolution images, used for training, validation, and testing across multiple crop types with annotated crop rows. The system demonstrated superior performance, achieved an F1 score up to 0.74 and a lane position deviation as low as 0.405. Furthermore, RowDetr achieves a real-time inference latency of 6.7ms, which was optimized to 3.5ms with INT8 quantization on an NVIDIA Jetson Orin AGX. This work highlighted the critical efficiency of polynomial parameterization, making RowDetr particularly suitable for deployment on edge computing devices in agricultural robotics and autonomous farming equipment. Index terms > Crop Row Detection, Under Canopy Navigation, Transformers, RT-DETR, RT-DETRv2
- Abstract(参考訳): クロップ列検出により、自律ロボットはgpsが拒否された環境で移動することができる。
ビジョンベースの戦略は、しばしばギャップや湾曲した作物列のために環境に苦しむ。
さらに,オクルージョンのため,キャノピー環境下での作物列のラベル付けは極めて困難である。
本研究では、精密農業における作物列検出のための効率的なエンドツーエンドトランスフォーマーベースニューラルネットワークRowDetrを紹介する。
RowDetrは軽量のバックボーンとハイブリッドエンコーダを活用して、正確性の高いストレート、カーブ、または閉塞された作物列をモデル化する。
アーキテクチャの中心は、計算コストのかかる後処理をなくし、作物列の直接パラメータ化を可能にする新しい多項式表現である。
主なイノベーションは、PolySamplerモジュールと、PolyOptLossと連携して動作するマルチスケールの変形可能なアテンションである。
RowDetrは、AgroNavやRolColAttentionのような最先端の作物列検出方法に対して、6,962の高解像度画像の多様なデータセットで評価され、アノテートされた作物列を持つ複数の作物の訓練、検証、テストに使用された。
このシステムは優れた性能を示し、F1スコアは0.74まで、レーン位置偏差は0.405まで低下した。
さらにRowDetrは6.7msのリアルタイム推論レイテンシを実現し、NVIDIA Jetson Orin AGX上のINT8量子化で3.5msに最適化された。
この研究は多項式パラメータ化の重要な効率を強調し、RowDetrは特に農業ロボットや自律農業機器のエッジコンピューティングデバイスへの展開に適している。
Index terms > Crop Row Detection, Under Canopy Navigation, Transformers, RT-DETR, RT-DETRv2
関連論文リスト
- Hydra-Bench: A Benchmark for Multi-Modal Leaf Wetness Sensing [5.54739216930577]
本稿では,葉の濡れ度検出における機械学習アルゴリズムの評価と進展に特化して設計された,新しいマルチモーダルデータセットを提案する。
本データセットは,5種の植物から6ヶ月以上にわたって収集したmWave生データ,合成開口レーダ(SAR)画像,RGB画像から構成した。
論文 参考訳(メタデータ) (2025-07-30T13:47:56Z) - What You Have is What You Track: Adaptive and Robust Multimodal Tracking [72.92244578461869]
本研究では,時間的に不完全なマルチモーダルデータを用いたトラッカー性能に関する総合的研究を行った。
我々のモデルは9つのベンチマークでSOTA性能を達成し、従来の完全性と欠落したモダリティ設定の両方で優れている。
論文 参考訳(メタデータ) (2025-07-08T11:40:21Z) - RSAR: Restricted State Angle Resolver and Rotated SAR Benchmark [61.987291551925516]
単位円制限損失を組み込んで角度予測精度を向上させるユニットサイクルリゾルバを導入する。
提案手法は,既存の最先端教師あり手法の性能を効果的に向上させることができる。
UCRの助けを借りて、これまでで最大の多クラス回転SARオブジェクト検出データセットであるRSARをさらに注釈し、導入する。
論文 参考訳(メタデータ) (2025-01-08T11:41:47Z) - An Enhanced Classification Method Based on Adaptive Multi-Scale Fusion for Long-tailed Multispectral Point Clouds [67.96583737413296]
長距離分布を持つMPCに対する適応的マルチスケール融合に基づく拡張型分類法を提案する。
トレーニングセット生成段階では、スパースラベル付きデータセットからトレーニングサンプルを確実に生成するグリッドバランスサンプリング戦略が設計されている。
特徴学習の段階では,異なるスケールの土地被覆の浅い特徴を融合させるため,マルチスケールの特徴融合モジュールが提案されている。
論文 参考訳(メタデータ) (2024-12-16T03:21:20Z) - VARADE: a Variational-based AutoRegressive model for Anomaly Detection on the Edge [7.4646496981460855]
本研究は,エッジ上でのリアルタイム実行に最適な変分推論に基づく軽量自己回帰フレームワークを実装した新しいソリューションを提案する。
提案手法は、パイロット生産ラインの一部であるロボットアームで検証され、最先端のアルゴリズムと比較された。
論文 参考訳(メタデータ) (2024-09-23T08:46:15Z) - PVAFN: Point-Voxel Attention Fusion Network with Multi-Pooling Enhancing for 3D Object Detection [59.355022416218624]
点とボクセルの表現の統合は、LiDARベースの3Dオブジェクト検出においてより一般的になりつつある。
PVAFN(Point-Voxel Attention Fusion Network)と呼ばれる新しい2段3次元物体検出器を提案する。
PVAFNはマルチプール戦略を使用して、マルチスケールとリージョン固有の情報を効果的に統合する。
論文 参考訳(メタデータ) (2024-08-26T19:43:01Z) - CurbNet: Curb Detection Framework Based on LiDAR Point Cloud Segmentation [7.451629109566809]
本稿では,ポイントクラウドセグメンテーションを利用した検出を抑える新しいフレームワークであるCurbNetを紹介する。
我々はセマンティックKITTIをベースとした3D-Curbデータセットを開発した。
xy平面上の凹凸特性の不均一分布と、z軸に沿った高周波特性への依存による課題に対処するため、マルチスケール・チャネルアテンション(MSCA)モジュールを導入する。
論文 参考訳(メタデータ) (2024-03-25T14:13:09Z) - Find n' Propagate: Open-Vocabulary 3D Object Detection in Urban Environments [67.83787474506073]
我々は,現在のLiDARに基づく3Dオブジェクト検出システムの限界に対処する。
本稿では,3次元OVタスクに対する汎用textscFind n' Propagate アプローチを提案する。
我々は、新しいオブジェクトクラスに対する平均精度(AP)を最大3.97倍に向上させる。
論文 参考訳(メタデータ) (2024-03-20T12:51:30Z) - Global Context Aggregation Network for Lightweight Saliency Detection of
Surface Defects [70.48554424894728]
我々は,エンコーダ・デコーダ構造上の表面欠陥を簡易に検出するためのGCANet(Global Context Aggregation Network)を開発した。
まず、軽量バックボーンの上部層に新しいトランスフォーマーエンコーダを導入し、DSA(Depth-wise Self-Attention)モジュールを通じてグローバルなコンテキスト情報をキャプチャする。
3つの公開欠陥データセットの実験結果から,提案したネットワークは,他の17の最先端手法と比較して,精度と実行効率のトレードオフを良好に達成できることが示された。
論文 参考訳(メタデータ) (2023-09-22T06:19:11Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - R2Det: Redemption from Range-view for Accurate 3D Object Detection [16.855672228478074]
Reemption from Range-view Module (R2M) は2次元視野から3次元視点への3次元表面テクスチャ強化のためのプラグアンドプレイアプローチである。
R2Mは、最先端のLiDARベースの3Dオブジェクト検出器を前処理としてシームレスに統合することができる。
論文 参考訳(メタデータ) (2023-07-21T10:36:05Z) - 3D Harmonic Loss: Towards Task-consistent and Time-friendly 3D Object
Detection on Edge for Intelligent Transportation System [28.55894241049706]
本稿では,ポイントクラウドに基づく不整合予測を緩和する3次元高調波損失関数を提案する。
提案手法はベンチマークモデルよりも性能が大幅に向上する。
私たちのコードはオープンソースで公開されています。
論文 参考訳(メタデータ) (2022-11-07T10:11:48Z) - Vision based Crop Row Navigation under Varying Field Conditions in
Arable Fields [6.088167023055281]
そこで本研究では,サトウキビとトウモロコシの11種類の畑種を用いた作物列検出用データセットを提案する。
また,作物列フィールドにおける視覚サーボのための新しい作物列検出アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-09-28T11:23:34Z) - Deep learning-based Crop Row Detection for Infield Navigation of
Agri-Robots [10.386591972977207]
本稿では、安価なカメラを用いて、フィールド変動に耐えられるロバストな作物列検出アルゴリズムを提案する。
複数の生育段階、光度、雑草密度の変化、曲がりくねった作物の列、不連続な作物の列からなる11のフィールド変動を表すサトウキビ画像のデータセットを作成した。
提案アルゴリズムは, 基準値よりも高いフィールド条件下で, 頑健な視覚に基づく作物の列検出を実証した。
論文 参考訳(メタデータ) (2022-09-09T12:47:24Z) - Weakly Aligned Feature Fusion for Multimodal Object Detection [52.15436349488198]
マルチモーダルデータはしばしば位置ずれの問題に悩まされます。つまり、イメージペアは厳密に一致していません。
この問題により、マルチモーダルな特徴を融合させることが難しくなり、畳み込みニューラルネットワーク(CNN)のトレーニングが難解になる。
本稿では、位置ずれ問題に対処するために、アライメント領域CNN(AR-CNN)と呼ばれる汎用マルチモーダル検出器を提案する。
論文 参考訳(メタデータ) (2022-04-21T02:35:23Z) - Stress-Testing LiDAR Registration [52.24383388306149]
本稿では,LiDARデータセットからフレームペアの挑戦的集合である平衡登録集合を選択する手法を提案する。
おそらく予想外のことに、最も高速かつ同時に正確なアプローチは、先進RANSACのバージョンであることがわかった。
論文 参考訳(メタデータ) (2022-04-16T05:10:55Z) - Towards Infield Navigation: leveraging simulated data for crop row
detection [6.088167023055281]
シミュレーションによって生成されたデータとともに、小さな実世界のデータセットの利用を提案し、大規模な実世界のデータセットで訓練されたモデルと同様の作物列検出性能を得る。
提案手法は,実世界データを用いて学習した深層学習に基づく作物列検出モデルの性能を60%低減した実世界データを用いて達成することができる。
論文 参考訳(メタデータ) (2022-04-04T19:28:30Z) - Towards agricultural autonomy: crop row detection under varying field
conditions using deep learning [4.252146169134215]
本稿では,深層学習に基づく作出行検出のためのセマンティックセマンティックセグメンテーション手法の堅牢性を評価するための新しい指標を提案する。
様々なフィールド条件下で遭遇する10のカテゴリのデータセットをテストに使用した。
これらの条件が作物列検出の角精度に及ぼす影響を比較検討した。
論文 参考訳(メタデータ) (2021-09-16T23:12:08Z) - Canny-VO: Visual Odometry with RGB-D Cameras based on Geometric 3D-2D
Edge Alignment [85.32080531133799]
本稿では,自由形式の曲線登録に関する古典的な問題をレビューし,効率的なrgbdビジュアルオドメトリシステムcanny-voに適用する。
エッジ登録でよく用いられる距離変換の代替として、近似近接近傍場と配向近接近傍場という2つの方法が提案されている。
3D2Dエッジアライメントは、効率性と精度の両方の観点から、これらの代替製剤の恩恵を受けます。
論文 参考訳(メタデータ) (2020-12-15T11:42:17Z) - Learning the Linear Quadratic Regulator from Nonlinear Observations [135.66883119468707]
我々は、LQR with Rich Observations(RichLQR)と呼ばれる連続制御のための新しい問題設定を導入する。
本設定では, 線形力学と二次的コストを有する低次元連続潜伏状態によって環境を要約する。
本結果は,システムモデルと一般関数近似における未知の非線形性を持つ連続制御のための,最初の証明可能なサンプル複雑性保証である。
論文 参考訳(メタデータ) (2020-10-08T07:02:47Z) - Reconfigurable Voxels: A New Representation for LiDAR-Based Point Clouds [76.52448276587707]
本稿では,3次元点群から表現を構成する新しい手法であるReconfigurable Voxelsを提案する。
具体的には,各地区を一定数のボクセルで適応的にカバーするランダムウォーク方式を考案する。
この手法は,特に疎水領域において,ボクセル特性の安定性を効果的に向上することがわかった。
論文 参考訳(メタデータ) (2020-04-06T15:07:16Z) - Improved guarantees and a multiple-descent curve for Column Subset
Selection and the Nystr\"om method [76.73096213472897]
我々は,データ行列のスペクトル特性を利用して近似保証を改良する手法を開発した。
我々のアプローチは、特異値減衰の既知の速度を持つデータセットのバウンダリが大幅に向上する。
RBFパラメータを変更すれば,改良された境界線と多重発振曲線の両方を実データセット上で観測できることが示される。
論文 参考訳(メタデータ) (2020-02-21T00:43:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。