The role of nuclear spin diffusion in dynamic nuclear polarization of crystalline nanoscale silicon particles
- URL: http://arxiv.org/abs/2412.10536v1
- Date: Fri, 13 Dec 2024 20:09:03 GMT
- Title: The role of nuclear spin diffusion in dynamic nuclear polarization of crystalline nanoscale silicon particles
- Authors: Gevin von Witte, Konstantin Tamarov, Neva Sahin, Aaron Himmler, Vera Ganz, Jani O. Moilanen, Vesa-Pekka Lehto, Grzegorz Kwiatkowski, Sebastian Kozerke, Matthias Ernst,
- Abstract summary: Hyperpolarized nanoparticles (NPs) offer high polarization levels with room temperature relaxation times exceeding half an hour.
In this work, we demonstrate that the achievable hyperpolarization enhancement and relaxation (decay) time at room temperature are largely independent of the particle size.
- Score: 0.112351450483835
- License:
- Abstract: Hyperpolarized nanoparticles (NPs) offer high polarization levels with room temperature relaxation times exceeding half an hour. In this work, we demonstrate that the achievable hyperpolarization enhancement and relaxation (decay) time at room temperature are largely independent of the particle size contrary to previous assumptions. This is explained through first-principles spin-diffusion coefficient calculations and finite-element polarization simulations. The simulated zero-quantum (flip-flop) line width governing the spin diffusion is found to agree with the experimentally accessible single-quantum (single spin flip, e.g. radio-frequency pulse) line width. The transport of hyperpolarization from strongly hyperfine-coupled spins towards the bulk is most likelybelieved to be responsible for the slow polarization dynamics including long room temperature decay time. The line width and spin-diffusion simulations are extended to other cubic crystal structures and analytical expressions, which only require insertion of the gyromagnetic ratio, lattice constant, isotope abundance and measured spectral density distribution (nuclear line width), are fitted. The presented simulations can be adjusted to study spin diffusion in other materials.
Related papers
- Room-temperature optical spin polarization of an electron spin qudit in a vanadyl -- free base porphyrin dimer [35.34500698545813]
Photoexcited organic chromophores appended to molecular qubits can serve as a source of spin initialization or multi-level qudit generation for quantum information applications.
Time-resolved electron paramagnetic resonance (TREPR) experiments carried out at both 85 K and room temperature reveal the formation of a long-lived spin-polarized quartet state.
Exploiting this phenomenon affords the possibility of using photoinduced triplet states in porphyrins for quantum information as a resource to polarize and magnetically couple molecular electronic or nuclear spin qubits and qudits.
arXiv Detail & Related papers (2024-08-04T18:08:20Z) - Intrinsic high-fidelity spin polarization of charged vacancies in hexagonal boron nitride [2.702226162822497]
negatively charged boron vacancy ($mathrmV_mathrmB-$) in hexagonal boron nitride (hBN) has garnered significant attention among defects in two-dimensional materials.
We develop a semiclassical model that predicts a near-unity degree of spin polarization, surpassing other solid-state spin defects under ambient conditions.
arXiv Detail & Related papers (2024-06-17T18:00:00Z) - Floquet-engineered chiral-induced spin selectivity [0.0]
We show that CISS can be observed in achiral systems driven by an external circularly polarized laser field in the framework of Floquet engineering.
To obtain a wider range of energies for large spin polarization, a combination of chiral molecules and light-matter interactions is considered.
arXiv Detail & Related papers (2023-02-20T07:06:17Z) - Momentum-selective pair creation of spin excitations in dipolar bilayers [0.0]
We study the temporal growth and spatial propagation of quantum correlations in a two-dimensional bilayer realising a spin-1/2 quantum XXZ model with couplings mediated by long-range and anisotropic dipolar interactions.
The predicted behavior remains observable at very low filling fractions, making it accessible in state-of-the-art experiments with Rydberg atoms, magnetic atoms, and polar molecule arrays.
arXiv Detail & Related papers (2023-02-17T18:50:13Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Rapidly enhanced spin polarization injection in an optically pumped spin
ratchet [49.1301457567913]
We report on a strategy to boost the spin injection rate by exploiting electrons that can be rapidly polarized.
We demonstrate this in a model system of Nitrogen Vacancy center electrons injecting polarization into a bath of 13C nuclei in diamond.
Through a spin-ratchet polarization transfer mechanism, we show boosts in spin injection rates by over two orders of magnitude.
arXiv Detail & Related papers (2021-12-14T08:23:10Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
Spin-bath interactions are strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance.
We show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $13$C nuclear spins introduces decoherence into the system.
Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
arXiv Detail & Related papers (2021-05-16T06:15:00Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Ab initio Ultrafast Spin Dynamics in Solids [0.7874708385247353]
We present a first-principles real-time density-matrix approach based on Lindblad dynamics to simulate ultrafast spin dynamics for general solid-state systems.
We find that the electron-electron scattering is negligible at room temperature but becomes dominant at low temperatures for spin relaxation in n-type GaAs.
arXiv Detail & Related papers (2020-12-16T02:49:47Z) - Optically pumped spin polarization as a probe of many-body
thermalization [50.591267188664666]
We study the spin diffusion dynamics of 13C in diamond, which we dynamically polarize at room temperature via optical spin pumping of engineered color centers.
We find good thermal contact throughout the nuclear spin bath, virtually independent of the hyperfine coupling strength.
Our results open intriguing opportunities to study the onset of thermalization in a system by controlling the internal interactions within the bath.
arXiv Detail & Related papers (2020-05-01T23:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.