Intrinsic high-fidelity spin polarization of charged vacancies in hexagonal boron nitride
- URL: http://arxiv.org/abs/2406.11953v1
- Date: Mon, 17 Jun 2024 18:00:00 GMT
- Title: Intrinsic high-fidelity spin polarization of charged vacancies in hexagonal boron nitride
- Authors: Wonjae Lee, Vincent S. Liu, Zhelun Zhang, Sangha Kim, Ruotian Gong, Xinyi Du, Khanh Pham, Thomas Poirier, Zeyu Hao, James H. Edgar, Philip Kim, Chong Zu, Emily J. Davis, Norman Y. Yao,
- Abstract summary: negatively charged boron vacancy ($mathrmV_mathrmB-$) in hexagonal boron nitride (hBN) has garnered significant attention among defects in two-dimensional materials.
We develop a semiclassical model that predicts a near-unity degree of spin polarization, surpassing other solid-state spin defects under ambient conditions.
- Score: 2.702226162822497
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The negatively charged boron vacancy ($\mathrm{V}_{\mathrm{B}}^-$) in hexagonal boron nitride (hBN) has garnered significant attention among defects in two-dimensional materials. This owes, in part, to its deterministic generation, well-characterized atomic structure, and optical polarizability at room temperature. We investigate the latter through extensive measurements probing both the ground and excited state polarization dynamics. We develop a semiclassical model based on these measurements that predicts a near-unity degree of spin polarization, surpassing other solid-state spin defects under ambient conditions. Building upon our model, we include the presence of nuclear spin degrees of freedom adjacent to the $\mathrm{V}_{\mathrm{B}}^-$ and perform a comprehensive set of Lindbladian numerics to investigate the hyperfine-induced polarization of the nuclear spins. Our simulations predict a number of important features that emerge as a function of magnetic field which are borne out by experiment.
Related papers
- Quantum Simulation of Spin-1 XXZ-Heisenberg Models and the Haldane Phase with Dysprosium [0.0]
We propose Dysprosium atoms for simulating the one-dimensional spin-1 XXZ-Heisenberg model.
We find that a chain of fermionic Dysprosium atoms in a suitable magnetic field can form a Haldane state with the characteristic spin-1/2 edge modes.
arXiv Detail & Related papers (2024-10-29T16:48:01Z) - Production and stabilization of a spin mixture of ultracold dipolar Bose gases [39.58317527488534]
We present experimental results for a mixture composed of the two lowest Zeeman states of $162$Dy atoms.
Due to an interference phenomenon, the rate for such inelastic processes is dramatically reduced with respect to the Wigner threshold law.
arXiv Detail & Related papers (2024-07-11T17:37:01Z) - Pentacene-Doped Naphthalene for Levitated Optomechanics [0.8192907805418583]
We introduce pentacene-doped naphthalene as a material for diamagnetic levitation, offering compelling applications in matter-wave interferometry and nuclear magnetic resonance.
Pentacene-doped naphthalene offers remarkable polarizability of its nuclear spin ensemble, achieving polarization rates exceeding 80 % at cryogenic temperatures.
arXiv Detail & Related papers (2024-05-22T17:51:54Z) - Robust external spin hyperpolarization of quadrupolar nuclei enabled by strain [7.997969189140034]
We show the possibility of obtaining external spin-polarization by magnetic-field sweeps across the level anticrossings around zero-field.
Results pave the way for hyperpolarization of spins in nanomaterials near the diamond surface without experiencing polarization loss to intrinsic nuclear spin-1/2 species.
The 11B spins in h-BN nanosheets, with their extended relaxation time and large surface area, present a promising alternative for relayed nuclear polarization to the liquid phase.
arXiv Detail & Related papers (2024-04-28T06:41:47Z) - Higher-order topological Peierls insulator in a two-dimensional
atom-cavity system [58.720142291102135]
We show how photon-mediated interactions give rise to a plaquette-ordered bond pattern in the atomic ground state.
The pattern opens a non-trivial topological gap in 2D, resulting in a higher-order topological phase hosting corner states.
Our work shows how atomic quantum simulators can be harnessed to investigate novel strongly-correlated topological phenomena.
arXiv Detail & Related papers (2023-05-05T10:25:14Z) - Optically-active spin defects in few-layer thick hexagonal boron nitride [0.0]
Optically-active spin defects in hexagonal boron nitride (hBN) are promising quantum systems for the design of two-dimensional quantum sensing units.
We first demonstrate that the electron spin resonance frequencies of boron vacancy centres (V$_textB-$) can be detected optically in the limit of few-atomic-layer thick hBN flakes.
We then analyze the variations of the electronic spin properties of V$_textB-$ centres with the hBN thickness.
arXiv Detail & Related papers (2023-04-24T13:06:16Z) - Spin-phonon decoherence in solid-state paramagnetic defects from first
principles [79.4957965474334]
Paramagnetic defects in diamond and hexagonal boron nitride possess a unique combination of spin and optical properties that make them solid-state qubits.
Despite the coherence of these spin qubits being critically limited by spin-phonon relaxation, a full understanding of this process is not yet available.
We demonstrate that low-frequency two-phonon modulations of the zero-field splitting are responsible for spin relaxation and decoherence.
arXiv Detail & Related papers (2022-12-22T13:48:05Z) - Coherent dynamics of strongly interacting electronic spin defects in
hexagonal boron nitride [3.93972364832565]
Optically active spin defects in van der Waals materials are promising platforms for modern quantum technologies.
Here we investigate the coherent dynamics of strongly interacting ensembles of negatively charged boron-vacancy centers in hexagonal boron nitride (hBN) with varying defect density.
Our results provide new insights on the spin and charge properties of $mathrmV_mathrmB-$, which are important for future use of defects in hBN as quantum sensors and simulators.
arXiv Detail & Related papers (2022-10-20T18:00:00Z) - A first-principles calculation of electron-phonon interactions for the
$\text{C}_2\text{C}_\text{N}$ and $\text{V}_\text{N}\text{N}_\text{B}$
defects in hexagonal boron nitride [52.77024349608834]
Quantum emitters in two-dimensional hexagonal boron nitride (h-BN) have generated significant interest.
Recent observations of Fourier transform (FT) limited photons emitted from h-BN flakes at room temperature.
arXiv Detail & Related papers (2022-07-28T23:31:38Z) - Phase diagram of a distorted kagome antiferromagnet and application to
Y-kapellasite [50.591267188664666]
We reveal a rich ground state phase diagram even at the classical level.
The presented model opens a new direction in the study of kagome antiferromagnets.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - A multiconfigurational study of the negatively charged nitrogen-vacancy
center in diamond [55.58269472099399]
Deep defects in wide band gap semiconductors have emerged as leading qubit candidates for realizing quantum sensing and information applications.
Here we show that unlike single-particle treatments, the multiconfigurational quantum chemistry methods, traditionally reserved for atoms/molecules, accurately describe the many-body characteristics of the electronic states of these defect centers.
arXiv Detail & Related papers (2020-08-24T01:49:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.