論文の概要: U-FaceBP: Uncertainty-aware Bayesian Ensemble Deep Learning for Face Video-based Blood Pressure Measurement
- arxiv url: http://arxiv.org/abs/2412.10679v1
- Date: Sat, 14 Dec 2024 04:51:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:55:28.724488
- Title: U-FaceBP: Uncertainty-aware Bayesian Ensemble Deep Learning for Face Video-based Blood Pressure Measurement
- Title(参考訳): U-FaceBP: 顔ビデオによる血圧測定のための不確かさを意識したベイズアンサンブル深層学習
- Authors: Yusuke Akamatsu, Terumi Umematsu, Hitoshi Imaoka,
- Abstract要約: 血圧測定(BP)は、毎日の健康を評価する上で重要な役割を担っている。
リモート光胸腺撮影(r)は、カメラが捉えた顔ビデオからパルス波を抽出する。
rFaceBPを用いたBP推定には多くの不確実性があり、推定性能が制限される。
本研究では,映像を用いたBP計測において,不確実性,すなわちデータ,モデル,アンサンブルの3種類のU-BPモデルを提案する。
- 参考スコア(独自算出の注目度): 5.4619385369457225
- License:
- Abstract: Blood pressure (BP) measurement plays an essential role in assessing health on a daily basis. Remote photoplethysmography (rPPG), which extracts pulse waves from camera-captured face videos, has the potential to easily measure BP for daily health monitoring. However, there are many uncertainties in BP estimation using rPPG, resulting in limited estimation performance. In this paper, we propose U-FaceBP, an uncertainty-aware Bayesian ensemble deep learning method for face video-based BP measurement. U-FaceBP models three types of uncertainty, i.e., data, model, and ensemble uncertainties, in face video-based BP estimation with a Bayesian neural network (BNN). We also design U-FaceBP as an ensemble method, with which BP is estimated from rPPG signals, PPG signals estimated from face videos, and face images using multiple BNNs. A large-scale experiment with 786 subjects demonstrates that U-FaceBP outperforms state-of-the-art BP estimation methods. We also show that the uncertainties estimated from U-FaceBP are reasonable and useful for prediction confidence.
- Abstract(参考訳): 血圧測定(BP)は、日常的に健康を評価する上で重要な役割を担っている。
カメラが捉えた顔画像からパルス波を抽出するrPPG(Remote Photoplethysmography)は、日常の健康モニタリングにBPを簡単に測定できる可能性がある。
しかし、rPPGを用いたBP推定には不確実性が多く、推定性能は限られている。
本稿では,顔映像を用いたBP計測のための不確実性を考慮したベイズアンサンブル深層学習手法であるU-FaceBPを提案する。
U-FaceBPは、ベイズニューラルネットワーク(BNN)を用いたビデオベースBP推定において、不確実性(データ、モデル、アンサンブルの不確実性)の3つのタイプをモデル化する。
我々はまた、U-FaceBPをアンサンブル方式として設計し、複数のBNNを用いて、rPPG信号、PPG信号からBPを推定する。
786の被験者による大規模な実験により、U-FaceBPは最先端のBP推定法より優れていることが示された。
また,U-FaceBPから推定される不確実性は妥当であり,予測信頼性に有用であることを示す。
関連論文リスト
- A Multi-scenario Attention-based Generative Model for Personalized Blood Pressure Time Series Forecasting [6.311504297463515]
連続血圧モニタリングは、重要なケア設定において、タイムリーな診断と介入に不可欠である。
本研究では,心電図(ECG)と光胸腺図( Photoplethysmogram)の信号を用いたパーソナライズされたBP予測モデルを提案する。
実験は,60名の被験者からBP測定を行った3つのシナリオから収集したデータセットを用いて行った。
論文 参考訳(メタデータ) (2024-09-07T04:24:15Z) - Towards Understanding the Robustness of Diffusion-Based Purification: A Stochastic Perspective [65.10019978876863]
拡散性浄化(DBP)は、敵の攻撃に対する効果的な防御機構として出現している。
本稿では、DBPプロセスの本質が、その堅牢性の主要な要因であると主張している。
論文 参考訳(メタデータ) (2024-04-22T16:10:38Z) - A Finger on the Pulse of Cardiovascular Health: Estimating Blood Pressure with Smartphone Photoplethysmography-Based Pulse Waveform Analysis [2.4347312660509672]
本研究は, 血圧推定のためのスマートフォンを用いた光プラチスモグラフィー(SPW-BP)の革新的4つの戦略を提案する。
我々は,高次正規化やデータ削除,境界信号再構成など,しばしば無視されるデータ品質改善技術を採用している。
相関とSHAP分析はBP推定を改善するための重要な特徴を同定した。
しかし, Bland-Altman 分析では系統的偏りがみられ, MAE 解析ではAAMI と BHS の精度基準を満たしていないことがわかった。
論文 参考訳(メタデータ) (2024-01-20T05:05:17Z) - Belief Propagation Decoding of Quantum LDPC Codes with Guided Decimation [55.8930142490617]
BPガイドデシミテーション(BPGD)に基づくQLDPC符号のデコーダを提案する。
BPGDは非収束によるBP故障率を著しく低下させる。
論文 参考訳(メタデータ) (2023-12-18T05:58:07Z) - R-LPIPS: An Adversarially Robust Perceptual Similarity Metric [71.33812578529006]
本稿では,Robust Learned Perceptual Image Patch similarity(R-LPIPS)メトリクスを提案する。
R-LPIPSは、敵対的に訓練された深い特徴を活用する新しい指標である。
従来のLPIPSメトリックと比較して,R-LPIPSの優位性を示す。
論文 参考訳(メタデータ) (2023-07-27T19:11:31Z) - A Theoretical View of Linear Backpropagation and Its Convergence [55.69505060636719]
バックプロパゲーション(BP)はディープニューラルネットワーク(DNN)の勾配を計算するために広く用いられている
最近では、NinBPと呼ばれるBPの線形変種が導入され、ブラックボックス攻撃を行うためのより伝達可能な逆の例が生み出された。
本稿では,LinBPのニューラルネットワーク関連学習課題における理論的解析について述べる。
論文 参考訳(メタデータ) (2021-12-21T07:18:00Z) - BP-Net: Efficient Deep Learning for Continuous Arterial Blood Pressure
Estimation using Photoplethysmogram [0.06524460254566904]
血圧は心臓血管疾患や脳卒中に最も影響を及ぼすバイオマーカーの1つである。
連続BPモニタリングへの現在のカフレスアプローチは、フォトプレソグラム信号を取り巻く明示的な特徴工学を含む。
本稿では,PPG波形を用いてSystolic BP (SBP), Mean Average Pressure (MAP), Diastolic BP (DBP) を中間連続動脈BP (ABP) 波形で推定する。
論文 参考訳(メタデータ) (2021-11-29T14:43:58Z) - A Deep Learning Approach to Predict Blood Pressure from PPG Signals [10.028103259763352]
血圧(BP)は、身体の生命維持機能を示す4つの主要な重要な兆候の1つである。
PPG信号に基づいてBPを推定するために,3層ディープニューラルネットワークを用いた高度なデータ駆動手法を提案する。
論文 参考訳(メタデータ) (2021-07-30T22:45:34Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
既存の予測モデルは不確実な定量化を無視し、誤校正予測をもたらす。
不確実性を考慮した時系列予測のためのディープニューラルネットワークの最近の研究にもいくつかの制限がある。
本稿では,予測タスクを確率的生成過程としてモデル化し,EPIFNPと呼ばれる機能的ニューラルプロセスモデルを提案する。
論文 参考訳(メタデータ) (2021-06-07T18:31:47Z) - Ambulatory blood pressure monitoring versus office blood pressure
measurement: Are there sex differences? [55.41644538483948]
オフィス血圧測定(英語: Office Blood Pressure Measurement, OBP)は、血圧を24時間で測定する技術である。
本研究の目的は,高血圧を疑う822名の患者において,性差がOBPとABPMの相違に及ぼす影響について検討することである。
論文 参考訳(メタデータ) (2021-06-04T10:09:44Z) - Continuous Monitoring of Blood Pressure with Evidential Regression [19.92542487970484]
光胸腺X線写真(MIC)信号を用いた血圧推定は,最新のBP測定の候補として期待できる。
提案手法は,不確実性を推定し,医療状態の診断に役立てることにより,予測BPの信頼性を提供する。
論文 参考訳(メタデータ) (2021-02-06T09:09:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。