論文の概要: Adaptive Reward Design for Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2412.10917v2
- Date: Sat, 17 May 2025 21:14:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-20 14:57:10.344217
- Title: Adaptive Reward Design for Reinforcement Learning
- Title(参考訳): 強化学習のための適応的リワード設計
- Authors: Minjae Kwon, Ingy ElSayed-Aly, Lu Feng,
- Abstract要約: 本稿では,RLエージェントをインセンティブとして,論理式で指定されたタスクを可能な限り完了させる報奨関数群を提案する。
学習過程において報酬関数を動的に更新する適応型報酬生成手法を開発した。
- 参考スコア(独自算出の注目度): 2.3031174164121127
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There is a surge of interest in using formal languages such as Linear Temporal Logic (LTL) to precisely and succinctly specify complex tasks and derive reward functions for Reinforcement Learning (RL). However, existing methods often assign sparse rewards (e.g., giving a reward of 1 only if a task is completed and 0 otherwise). By providing feedback solely upon task completion, these methods fail to encourage successful subtask completion. This is particularly problematic in environments with inherent uncertainty, where task completion may be unreliable despite progress on intermediate goals. To address this limitation, we propose a suite of reward functions that incentivize an RL agent to complete a task specified by an LTL formula as much as possible, and develop an adaptive reward shaping approach that dynamically updates reward functions during the learning process. Experimental results on a range of benchmark RL environments demonstrate that the proposed approach generally outperforms baselines, achieving earlier convergence to a better policy with higher expected return and task completion rate.
- Abstract(参考訳): 線形時間論理(LTL)のような形式言語を用いて、複雑なタスクを正確にかつ簡潔に指定し、強化学習(RL)のための報酬関数を導出することへの関心が高まっている。
しかし、既存のメソッドはしばしばスパース報酬を割り当てる(例えば、タスクが完了し、0がなければ1の報酬を与える)。
タスク完了のみにフィードバックを提供することで、これらのメソッドはサブタスク完了を成功させるのに失敗する。
これは、中間目標の進行にもかかわらずタスク完了が信頼できないような、固有の不確実性のある環境において特に問題となる。
この制限に対処するために、LTL式で指定されたタスクをできるだけ完了させるために、RLエージェントにインセンティブを与える報酬関数群を提案し、学習プロセス中に報酬関数を動的に更新する適応報酬形成アプローチを開発する。
様々なベンチマークRL環境における実験結果から,提案手法は概してベースラインよりも優れており,期待されるリターン率とタスク完了率の高い,より優れたポリシへの早期収束を実現している。
関連論文リスト
- SPA-RL: Reinforcing LLM Agents via Stepwise Progress Attribution [9.181156720071547]
強化学習は、複雑な目標志向のタスクを扱うためのトレーニングエージェントの約束である。
フィードバック信号は通常、タスク全体が完了した後でのみ利用可能である。
我々は、最終報酬を段階的な貢献に分解するステップワイドプログレス属性を提案する。
論文 参考訳(メタデータ) (2025-05-27T05:21:04Z) - Fast Adaptation with Behavioral Foundation Models [82.34700481726951]
教師なしゼロショット強化学習は、行動基礎モデルの事前学習のための強力なパラダイムとして登場した。
有望な結果にもかかわらず、ゼロショットポリシーは、教師なしのトレーニングプロセスによって引き起こされるエラーにより、しばしば準最適である。
本稿では,事前訓練されたBFMの低次元タスク埋め込み空間を探索し,ゼロショットポリシーの性能を急速に向上させる高速適応手法を提案する。
論文 参考訳(メタデータ) (2025-04-10T16:14:17Z) - Exploring RL-based LLM Training for Formal Language Tasks with Programmed Rewards [49.7719149179179]
本稿では,PPOを用いた強化学習(RL)の実現可能性について検討する。
我々は,生成した出力の質を自動的に評価するために,明示的な報酬関数をプログラムできるプログラミングなどの形式言語で表されるタスクに焦点をあてる。
以上の結果から,2つの形式言語タスクに対する純粋なRLベースのトレーニングは困難であり,単純な算術タスクにおいても成功は限られていることがわかった。
論文 参考訳(メタデータ) (2024-10-22T15:59:58Z) - Automated Rewards via LLM-Generated Progress Functions [47.50772243693897]
大きな言語モデル(LLM)は、様々なタスクにまたがる広いドメイン知識を活用することで、報酬工学を自動化する可能性がある。
本稿では,挑戦的なBi-DexHandsベンチマーク上で,最先端のポリシーを生成可能なLLM駆動の報酬生成フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-11T18:41:15Z) - Stage-Wise Reward Shaping for Acrobatic Robots: A Constrained Multi-Objective Reinforcement Learning Approach [12.132416927711036]
本稿では,直感的戦略による報酬形成プロセスの簡略化を目的としたRL手法を提案する。
制約付き多目的RL(CMORL)フレームワークにおいて,複数の報酬関数とコスト関数を定義する。
逐次的な複雑な動きを含むタスクに対しては、タスクを異なるステージに分割し、各ステージに対する複数の報酬とコストを定義します。
論文 参考訳(メタデータ) (2024-09-24T05:25:24Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
大規模言語モデル(LLM)は、対話的な意思決定タスクにおいてインテリジェントなエージェントとして期待されている。
本稿では,トークンレベルでのLLMの最適化に適したエントロピー拡張RL法である,エントロピー正規化トークンレベル最適化(ETPO)を導入する。
我々は,データサイエンスコード生成を多段階対話型タスクのシリーズとしてモデル化したシミュレーション環境におけるETPOの有効性を評価する。
論文 参考訳(メタデータ) (2024-02-09T07:45:26Z) - Logical Specifications-guided Dynamic Task Sampling for Reinforcement Learning Agents [9.529492371336286]
強化学習(Reinforcement Learning、RL)は、人工エージェントが多様な振る舞いを学習できるようにするために大きな進歩を遂げてきた。
論理仕様誘導動的タスクサンプリング(LSTS)と呼ばれる新しい手法を提案する。
LSTSは、エージェントを初期状態から目標状態へ誘導するRLポリシーのセットを、ハイレベルなタスク仕様に基づいて学習する。
論文 参考訳(メタデータ) (2024-02-06T04:00:21Z) - Language Reward Modulation for Pretraining Reinforcement Learning [61.76572261146311]
本稿では,強化学習のための事前学習信号としてLRFの機能を活用することを提案する。
我々の VLM プレトレーニングアプローチは,従来の LRF の使い方とは違い,ロボット操作タスクにおけるサンプル効率の学習を温めることができる。
論文 参考訳(メタデータ) (2023-08-23T17:37:51Z) - Semantically Aligned Task Decomposition in Multi-Agent Reinforcement
Learning [56.26889258704261]
我々は,MARL(SAMA)における意味的アライズされたタスク分解という,新しい「不整合」意思決定手法を提案する。
SAMAは、潜在的な目標を示唆し、適切な目標分解とサブゴールアロケーションを提供するとともに、自己回帰に基づくリプランニングを提供する、チェーン・オブ・シントによる事前訓練された言語モデルを促進する。
SAMAは, 最先端のASG法と比較して, 試料効率に有意な優位性を示す。
論文 参考訳(メタデータ) (2023-05-18T10:37:54Z) - Discrete Factorial Representations as an Abstraction for Goal
Conditioned Reinforcement Learning [99.38163119531745]
離散化ボトルネックを適用することにより,目標条件付きRLセットアップの性能が向上することを示す。
分布外目標に対する期待した回帰を実験的に証明し、同時に表現的な構造で目標を指定できるようにします。
論文 参考訳(メタデータ) (2022-11-01T03:31:43Z) - Task Phasing: Automated Curriculum Learning from Demonstrations [46.1680279122598]
報酬ドメインを疎結合にするために強化学習を適用することは、ガイド信号が不十分なため、非常に難しい。
本稿では,実演を用いてカリキュラムのシーケンスを自動的に生成する手法を提案する。
3つのスパース報酬領域に対する実験結果から,我々のタスク・ファスリング・アプローチは,パフォーマンスに関して最先端のアプローチよりも優れていることが示された。
論文 参考訳(メタデータ) (2022-10-20T03:59:11Z) - Provable Benefits of Representational Transfer in Reinforcement Learning [59.712501044999875]
本稿では,RLにおける表現伝達の問題について検討し,エージェントがまず複数のソースタスクを事前訓練し,共有表現を発見する。
本稿では,ソースタスクに対する生成的アクセスが与えられた場合,次に続く線形RL手法がほぼ最適ポリシーに迅速に収束する表現を発見できることを示す。
論文 参考訳(メタデータ) (2022-05-29T04:31:29Z) - Jump-Start Reinforcement Learning [68.82380421479675]
本稿では、オフラインデータやデモ、あるいは既存のポリシーを使ってRLポリシーを初期化するメタアルゴリズムを提案する。
特に,タスク解決に2つのポリシーを利用するアルゴリズムであるJump-Start Reinforcement Learning (JSRL)を提案する。
実験により、JSRLは既存の模倣と強化学習アルゴリズムを大幅に上回っていることを示す。
論文 参考訳(メタデータ) (2022-04-05T17:25:22Z) - Reinforcement Learning Agent Training with Goals for Real World Tasks [3.747737951407512]
強化学習(RL)は、様々な制御、最適化、シーケンシャルな意思決定タスクを解決するための有望なアプローチである。
複雑な制御および最適化タスクのための仕様言語(Inkling Goal Specification)を提案する。
提案手法は現実世界のタスクを多種多様なタスクで指定するのに非常に容易であることを示す実験のセットを含む。
論文 参考訳(メタデータ) (2021-07-21T23:21:16Z) - Off-Policy Reinforcement Learning with Delayed Rewards [16.914712720033524]
多くの現実世界のタスクでは、エージェントがアクションを実行した直後に即時報酬がアクセスできない、あるいは定義できない。
本稿では、まず、遅延報酬を伴う環境を正式に定義し、このような環境の非マルコフ的な性質から生じる課題について議論する。
理論収束保証を伴う遅延報酬を処理できる新しいQ-関数の定式化を備えた一般の政治外RLフレームワークを導入する。
論文 参考訳(メタデータ) (2021-06-22T15:19:48Z) - Text Generation with Efficient (Soft) Q-Learning [91.47743595382758]
強化学習(RL)は、任意のタスクメトリクスを報酬としてプラグインすることで、より柔軟なソリューションを提供する。
ソフトQ-ラーニングの観点からテキスト生成のための新しいRL式を導入する。
雑音/負の例から学習し、敵攻撃、即時生成など、幅広いタスクにアプローチを適用する。
論文 参考訳(メタデータ) (2021-06-14T18:48:40Z) - Active Finite Reward Automaton Inference and Reinforcement Learning
Using Queries and Counterexamples [31.31937554018045]
深部強化学習(RL)法は, 良好な性能を達成するために, 環境探索からの集中的なデータを必要とする。
本稿では,RLエージェントが探索過程を推論し,その将来的な探索を効果的に導くための高レベルの知識を蒸留するフレームワークを提案する。
具体的には、L*学習アルゴリズムを用いて、有限報酬オートマトンという形で高レベルの知識を学習する新しいRLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-28T21:13:08Z) - Certified Reinforcement Learning with Logic Guidance [78.2286146954051]
線形時間論理(LTL)を用いて未知の連続状態/動作マルコフ決定過程(MDP)のゴールを定式化できるモデルフリーなRLアルゴリズムを提案する。
このアルゴリズムは、トレースが仕様を最大確率で満たす制御ポリシーを合成することが保証される。
論文 参考訳(メタデータ) (2019-02-02T20:09:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。