論文の概要: Cocoa: Co-Planning and Co-Execution with AI Agents
- arxiv url: http://arxiv.org/abs/2412.10999v3
- Date: Tue, 15 Apr 2025 18:47:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-17 18:06:23.746110
- Title: Cocoa: Co-Planning and Co-Execution with AI Agents
- Title(参考訳): Cocoa: AIエージェントによる共同計画と共同実行
- Authors: K. J. Kevin Feng, Kevin Pu, Matt Latzke, Tal August, Pao Siangliulue, Jonathan Bragg, Daniel S. Weld, Amy X. Zhang, Joseph Chee Chang,
- Abstract要約: 我々は、AIエージェントとのコラボレーションのための新しいデザインパターン(インタラクティブプラン)を導入するシステムであるCocoaを紹介する。
Cocoaは、計算ノートやドキュメントエディタからのインタラクション設計に基づいて、フレキシブルなエージェンシーデリゲートをサポートする。
サンプルドメインとして科学的研究を用いて、我々の研究室と現場での展開調査により、Cocoaは使いやすさを犠牲にすることなく、エージェントのステアビリティを改善した。
- 参考スコア(独自算出の注目度): 31.695129948650287
- License:
- Abstract: Human collaboration benefits from continuous coordination -- planning, delegating tasks, sharing progress, and adjusting objectives -- to align on shared goals. However, agentic AI systems often limit users to previewing or reviewing an agent's plans for fully autonomous execution. While this may be useful for confirmation and correction, it does not support deeper collaboration between humans and AI agents. We present Cocoa, a system that introduces a novel design pattern -- interactive plans -- for collaborating with an AI agent on complex, multi-step tasks. Informed by a formative study ($n=9$), Cocoa builds on interaction designs from computational notebooks and document editors to support flexible delegation of agency through Co-planning and Co-execution, where users collaboratively compose and execute plans with an Agent. Using scientific research as a sample domain, our lab (n=16) and field deployment (n=7) studies found that Cocoa improved agent steerability without sacrificing ease-of-use compared to a strong chat baseline. Additionally, researchers valued Cocoa for real-world projects and saw the interleaving of co-planning and co-execution as an effective novel paradigm for human-AI collaboration.
- Abstract(参考訳): ヒューマンコラボレーションは、計画、タスクの委譲、進捗の共有、目標の調整といった、継続的な調整の恩恵を、共通の目標に合わせるために与えます。
しかしながら、エージェントAIシステムは、完全に自律的な実行のためのエージェントの計画のプレビューやレビューをユーザが制限することが多い。
これは確認と修正に有用かもしれないが、人間とAIエージェントとのより深いコラボレーションをサポートしない。
我々は、複雑なマルチステップタスクでAIエージェントとコラボレーションするための、新しいデザインパターン(インタラクティブプラン)を導入するシステムであるCocoaを紹介する。
Cocoaは、計算ノートやドキュメントエディタからのインタラクション設計に基づいて、コプランニングと共同実行を通じてエージェンシーの柔軟なデリゲートをサポートする。
実験室 (n=16) と現場展開 (n=7) により, ココアは強力なチャットベースラインに比べて使いやすさを犠牲にすることなく, エージェントステアビリティを改善した。
さらに、研究者はココアを現実世界のプロジェクトとして評価し、人間とAIのコラボレーションのための効果的な新しいパラダイムとして、共同計画と共同実行のインターリーブを見ていた。
関連論文リスト
- Collaborative Gym: A Framework for Enabling and Evaluating Human-Agent Collaboration [51.452664740963066]
Collaborative Gymは、エージェント、人間、タスク環境間の非同期で三分割的なインタラクションを可能にするフレームワークである。
シミュレーション条件と実環境条件の両方において,Co-Gymを3つの代表的なタスクでインスタンス化する。
その結果、協調作業員はタスクパフォーマンスにおいて、完全に自律的なエージェントよりも一貫して優れていたことが判明した。
論文 参考訳(メタデータ) (2024-12-20T09:21:15Z) - ChatCollab: Exploring Collaboration Between Humans and AI Agents in Software Teams [1.3967206132709542]
ChatCollabの斬新なアーキテクチャは、エージェント(人間またはAI)が任意の役割でコラボレーションに参加することを可能にする。
ソフトウェアエンジニアリングをケーススタディとして使用することで、私たちのAIエージェントが彼らの役割と責任をうまく特定できることが分かりました。
ソフトウェア開発のための従来の3つのマルチエージェントAIシステムに関連して、ChatCollab AIエージェントはインタラクティブなゲーム開発タスクにおいて、同等またはより良いソフトウェアを生成する。
論文 参考訳(メタデータ) (2024-12-02T21:56:46Z) - Efficient Adaptation in Mixed-Motive Environments via Hierarchical Opponent Modeling and Planning [51.52387511006586]
本稿では,HOP(Hierarchical Opponent Modeling and Planning)を提案する。
HOPは階層的に2つのモジュールから構成される: 相手の目標を推論し、対応する目標条件のポリシーを学ぶ、反対モデリングモジュール。
HOPは、さまざまな未確認エージェントと相互作用する際、優れた少数ショット適応能力を示し、セルフプレイのシナリオで優れている。
論文 参考訳(メタデータ) (2024-06-12T08:48:06Z) - Learning Multi-Agent Communication from Graph Modeling Perspective [62.13508281188895]
本稿では,エージェント間の通信アーキテクチャを学習可能なグラフとして概念化する手法を提案する。
提案手法であるCommFormerは,通信グラフを効率よく最適化し,勾配降下によるアーキテクチャパラメータをエンドツーエンドで並列に洗練する。
論文 参考訳(メタデータ) (2024-05-14T12:40:25Z) - ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgentは、大規模な言語モデルを利用してプロアクティブエージェントを生成する新しいフレームワークである。
ProAgentは現状を分析し、チームメイトの意図を観察から推測することができる。
ProAgentは高度なモジュール化と解釈可能性を示し、様々な調整シナリオに容易に統合できる。
論文 参考訳(メタデータ) (2023-08-22T10:36:56Z) - Building Cooperative Embodied Agents Modularly with Large Language
Models [104.57849816689559]
本研究では, 分散制御, 生の知覚観察, コストのかかるコミュニケーション, 様々な実施環境下でインスタンス化された多目的タスクといった課題に対処する。
我々は,LLMの常識知識,推論能力,言語理解,テキスト生成能力を活用し,認知に触発されたモジュラーフレームワークにシームレスに組み込む。
C-WAH と TDW-MAT を用いた実験により, GPT-4 で駆動される CoELA が, 強い計画に基づく手法を超越し, 創発的な効果的なコミュニケーションを示すことを示した。
論文 参考訳(メタデータ) (2023-07-05T17:59:27Z) - CAMEL: Communicative Agents for "Mind" Exploration of Large Language
Model Society [58.04479313658851]
本稿では,コミュニケーションエージェント間の自律的協調を支援するスケーラブルな手法の構築の可能性について検討する。
本稿では,ロールプレイングという新しいコミュニケーションエージェントフレームワークを提案する。
コントリビューションには、新しいコミュニケーティブエージェントフレームワークの導入、マルチエージェントシステムの協調行動や能力を研究するためのスケーラブルなアプローチの提供などが含まれます。
論文 参考訳(メタデータ) (2023-03-31T01:09:00Z) - Behaviour-conditioned policies for cooperative reinforcement learning
tasks [41.74498230885008]
現実世界の様々なタスクにおいて、エージェントは未知のパートナーエージェントタイプと協力する必要がある。
深層強化学習モデルは、必要な機能を提供するためにトレーニングすることができるが、サンプルの非効率性と遅い学習に苦しむことが知られている。
本研究では,行動パターンの異なるエージェントの集団を合成的に生成する手法を提案する。
また、生成されたデータを効率的に利用し、メタ学習能力を得ることができるエージェントアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-10-04T09:16:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。