論文の概要: ChatCollab: Exploring Collaboration Between Humans and AI Agents in Software Teams
- arxiv url: http://arxiv.org/abs/2412.01992v1
- Date: Mon, 02 Dec 2024 21:56:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:43:05.121639
- Title: ChatCollab: Exploring Collaboration Between Humans and AI Agents in Software Teams
- Title(参考訳): ChatCollab: ソフトウェアチームにおける人間とAIエージェントのコラボレーションを探る
- Authors: Benjamin Klieger, Charis Charitsis, Miroslav Suzara, Sierra Wang, Nick Haber, John C. Mitchell,
- Abstract要約: ChatCollabの斬新なアーキテクチャは、エージェント(人間またはAI)が任意の役割でコラボレーションに参加することを可能にする。
ソフトウェアエンジニアリングをケーススタディとして使用することで、私たちのAIエージェントが彼らの役割と責任をうまく特定できることが分かりました。
ソフトウェア開発のための従来の3つのマルチエージェントAIシステムに関連して、ChatCollab AIエージェントはインタラクティブなゲーム開発タスクにおいて、同等またはより良いソフトウェアを生成する。
- 参考スコア(独自算出の注目度): 1.3967206132709542
- License:
- Abstract: We explore the potential for productive team-based collaboration between humans and Artificial Intelligence (AI) by presenting and conducting initial tests with a general framework that enables multiple human and AI agents to work together as peers. ChatCollab's novel architecture allows agents - human or AI - to join collaborations in any role, autonomously engage in tasks and communication within Slack, and remain agnostic to whether their collaborators are human or AI. Using software engineering as a case study, we find that our AI agents successfully identify their roles and responsibilities, coordinate with other agents, and await requested inputs or deliverables before proceeding. In relation to three prior multi-agent AI systems for software development, we find ChatCollab AI agents produce comparable or better software in an interactive game development task. We also propose an automated method for analyzing collaboration dynamics that effectively identifies behavioral characteristics of agents with distinct roles, allowing us to quantitatively compare collaboration dynamics in a range of experimental conditions. For example, in comparing ChatCollab AI agents, we find that an AI CEO agent generally provides suggestions 2-4 times more often than an AI product manager or AI developer, suggesting agents within ChatCollab can meaningfully adopt differentiated collaborative roles. Our code and data can be found at: https://github.com/ChatCollab.
- Abstract(参考訳): 我々は、複数の人間とAIエージェントが仲間として働くことを可能にする一般的なフレームワークで、最初のテストを提示し、実行することで、人間と人工知能(AI)の間の生産的なチームベースのコラボレーションの可能性を探る。
ChatCollabの新たなアーキテクチャでは,エージェント – 人あるいはAI – が任意の役割におけるコラボレーションに参加し,Slack内でのタスクとコミュニケーションを自律的に実施することが可能になる。
ソフトウェアエンジニアリングをケーススタディとして、私たちのAIエージェントが彼らの役割と責任を特定し、他のエージェントと調整し、要求されたインプットや成果物を待つことに成功しました。
ソフトウェア開発のための従来の3つのマルチエージェントAIシステムに関連して、ChatCollab AIエージェントはインタラクティブなゲーム開発タスクにおいて、同等またはより良いソフトウェアを生成する。
また,異なる役割を持つエージェントの行動特性を効果的に同定し,様々な実験条件下での協調動作を定量的に比較する,協調動作解析の自動化手法を提案する。
例えば、ChatCollabのAIエージェントの比較では、AIのCEOエージェントがAIプロダクトマネージャやAI開発者の2~4倍の頻度で提案を行うことが分かり、ChatCollab内のエージェントが、差別化されたコラボレーティブな役割を有意義に採用できることが示唆された。
私たちのコードとデータは、https://github.com/ChatCollab.comで参照できます。
関連論文リスト
- CowPilot: A Framework for Autonomous and Human-Agent Collaborative Web Navigation [70.3224918173672]
CowPilotは、自律的および人間とエージェントの協調的なWebナビゲーションをサポートするフレームワークである。
エージェントが次のステップを提案することによって、人間が実行しなければならないステップの数を減らすと同時に、ユーザが一時停止、拒否、代替アクションを取ることができる。
CowPilotは、Webサイト間でのデータ収集とエージェント評価のための便利なツールとして機能する。
論文 参考訳(メタデータ) (2025-01-28T00:56:53Z) - YETI (YET to Intervene) Proactive Interventions by Multimodal AI Agents in Augmented Reality Tasks [16.443149180969776]
Augmented Reality (AR)ヘッドウェアは、日々の手続き的なタスクを解く際のユーザエクスペリエンスを一意に改善することができる。
このようなAR機能は、AIエージェントがユーザーのマルチモーダル機能に関連するアクションを見て耳を傾けるのに役立つ。
一方、AIエージェントのプロアクティビティは、人間が観察されたタスクのミスを検出し、修正するのに役立つ。
論文 参考訳(メタデータ) (2025-01-16T08:06:02Z) - Collaborative Gym: A Framework for Enabling and Evaluating Human-Agent Collaboration [51.452664740963066]
Collaborative Gymは、エージェント、人間、タスク環境間の非同期で三分割的なインタラクションを可能にするフレームワークである。
シミュレーション条件と実環境条件の両方において,Co-Gymを3つの代表的なタスクでインスタンス化する。
その結果、協調作業員はタスクパフォーマンスにおいて、完全に自律的なエージェントよりも一貫して優れていたことが判明した。
論文 参考訳(メタデータ) (2024-12-20T09:21:15Z) - TheAgentCompany: Benchmarking LLM Agents on Consequential Real World Tasks [52.46737975742287]
私たちは小さなソフトウェア企業環境を模倣したデータによる自己完結型環境を構築します。
最も競争力のあるエージェントでは、タスクの24%が自律的に完了できます。
これは、LMエージェントによるタスク自動化に関するニュアンスな絵を描く。
論文 参考訳(メタデータ) (2024-12-18T18:55:40Z) - Two Heads Are Better Than One: Collaborative LLM Embodied Agents for Human-Robot Interaction [1.6574413179773757]
大規模言語モデル(LLM)は、自然言語コマンドを解釈するために、その膨大な理解を活用できなければならない。
しかし、これらのモデルは幻覚に悩まされ、安全上の問題やタスクからの逸脱を引き起こす可能性がある。
本研究では、一つの独立したAIエージェントに対して複数のコラボレーティブAIシステムがテストされ、他のドメインの成功が人間とロボットのインタラクション性能の改善につながるかどうかを判定した。
論文 参考訳(メタデータ) (2024-11-23T02:47:12Z) - The AI Collaborator: Bridging Human-AI Interaction in Educational and Professional Settings [3.506120162002989]
AI CollaboratorはOpenAIのGPT-4を利用しており、人間とAIのコラボレーション研究のために設計された画期的なツールである。
その特長は、研究者がさまざまな実験的なセットアップのためにカスタマイズされたAIペルソナを作成できることだ。
この機能は、チーム設定におけるさまざまな対人的ダイナミクスをシミュレートするために不可欠です。
論文 参考訳(メタデータ) (2024-05-16T22:14:54Z) - CACA Agent: Capability Collaboration based AI Agent [18.84686313298908]
本稿ではCACAエージェント(Capability Collaboration based AI Agent)を提案する。
CACA Agentは、単一のLLMへの依存を減らすだけでなく、AI Agentを実装するための一連のコラボレーティブ機能を統合する。
本稿ではCACAエージェントの動作とアプリケーションシナリオの拡張について説明する。
論文 参考訳(メタデータ) (2024-03-22T11:42:47Z) - The Rise and Potential of Large Language Model Based Agents: A Survey [91.71061158000953]
大規模言語モデル(LLM)は、人工知能(AGI)の潜在的な火花と見なされる
まず、エージェントの概念を哲学的起源からAI開発まで追跡し、LLMがエージェントに適した基盤である理由を説明します。
単一エージェントシナリオ,マルチエージェントシナリオ,ヒューマンエージェント協調の3つの側面において,LLMベースのエージェントの広範な応用について検討する。
論文 参考訳(メタデータ) (2023-09-14T17:12:03Z) - ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgentは、大規模な言語モデルを利用してプロアクティブエージェントを生成する新しいフレームワークである。
ProAgentは現状を分析し、チームメイトの意図を観察から推測することができる。
ProAgentは高度なモジュール化と解釈可能性を示し、様々な調整シナリオに容易に統合できる。
論文 参考訳(メタデータ) (2023-08-22T10:36:56Z) - Improving Grounded Language Understanding in a Collaborative Environment
by Interacting with Agents Through Help Feedback [42.19685958922537]
我々は、人間とAIのコラボレーションは対話的であり、人間がAIエージェントの作業を監視し、エージェントが理解し活用できるフィードバックを提供するべきだと論じている。
本研究では, IGLUコンペティションによって定義された課題である, マイニングクラフトのような世界における対話型言語理解タスクを用いて, これらの方向を探索する。
論文 参考訳(メタデータ) (2023-04-21T05:37:59Z) - CAMEL: Communicative Agents for "Mind" Exploration of Large Language
Model Society [58.04479313658851]
本稿では,コミュニケーションエージェント間の自律的協調を支援するスケーラブルな手法の構築の可能性について検討する。
本稿では,ロールプレイングという新しいコミュニケーションエージェントフレームワークを提案する。
コントリビューションには、新しいコミュニケーティブエージェントフレームワークの導入、マルチエージェントシステムの協調行動や能力を研究するためのスケーラブルなアプローチの提供などが含まれます。
論文 参考訳(メタデータ) (2023-03-31T01:09:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。