論文の概要: Cultural Palette: Pluralising Culture Alignment via Multi-agent Palette
- arxiv url: http://arxiv.org/abs/2412.11167v2
- Date: Sun, 16 Feb 2025 12:21:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:05:11.047824
- Title: Cultural Palette: Pluralising Culture Alignment via Multi-agent Palette
- Title(参考訳): 文化パレット:マルチエージェントパレットによる複数文化アライメント
- Authors: Jiahao Yuan, Zixiang Di, Shangzixin Zhao, Usman Naseem,
- Abstract要約: 大きな言語モデル(LLM)は、世代における顕著なパフォーマンスにもかかわらず、さまざまな文化的価値と整合する上で課題に直面します。
文化パレット(Cultural Palette)は、文化的なアライメントを再定義するマルチエージェントフレームワークである。
- 参考スコア(独自算出の注目度): 4.734467531211981
- License:
- Abstract: Large language models (LLMs) face challenges in aligning with diverse cultural values despite their remarkable performance in generation, which stems from inherent monocultural biases and difficulties in capturing nuanced cultural semantics. Existing methods struggle to adapt to unkown culture after fine-tuning. Inspired by cultural geography across five continents, we propose Cultural Palette, a multi-agent framework that redefines cultural alignment as an adaptive "color-blending" process for country-specific adaptation. Our approach harnesses cultural geography across five continents (Africa, America, Asia, Europe, Oceania) through three key steps: First, we synthesize the Pentachromatic Cultural Palette Dataset using GPT-4o, refining continental-level dialogues with Hofstede cultural dimensions to establish foundational cultural representations. Second, five continent-level alignment agents form specialized cultural communities that generate region-specific draft responses. Third, a Meta Agent employs Cultural MoErges to dynamically blend these cultural "colors" through attention-gated parameter merging, akin to mixing pigments on a palette, resolving conflicts while preserving cultural nuances to produce the final culturally-aligned response. Extensive experiments across various countries demonstrate that Cultural Palette surpasses existing baselines in cultural alignment.
- Abstract(参考訳): 大きな言語モデル (LLMs) は、その世代における顕著なパフォーマンスにもかかわらず、様々な文化的価値と整合する上で困難に直面している。
既存の手法は微調整後に無名の文化に適応するのに苦労する。
文化パレット(Cultural Palette)は、文化的なアライメントを再定義する多エージェントの枠組みであり、国固有の適応のための適応的な「カラーブリング」プロセスである。
本稿では,5大陸(アフリカ,アメリカ,アジア,ヨーロッパ,オセアニア)の文化地理学を,まず,GPT-4oを用いてペンタクロマティックカルチャーパレットデータセットを合成し,ホフスティーデ文化次元と大陸レベルの対話を精査し,基礎的文化的表現を確立する。
第2に、大陸レベルの5つのアライメントエージェントが、地域固有のドラフトレスポンスを生成する専門的な文化コミュニティを形成している。
第3に、メタエージェントは文化的な「色」を動的にブレンドするためにカルチャー・モエルゲス(英語版)を採用し、パレットに顔料を混ぜ、対立を解消し、文化的なニュアンスを保ち、文化的に整合した最後の反応を生み出す。
様々な国における大規模な実験は、カルチャー・パレットが既存の文化的アライメントのベースラインを超えたことを示している。
関連論文リスト
- Self-Pluralising Culture Alignment for Large Language Models [36.689491885394034]
本稿では,大規模言語モデルと多言語文化との整合性を実現するフレームワークであるCultureSPAを提案する。
カルチャー・アウェア/アウェアアウトプットを比較することで、カルチャー関連インスタンスを検出し、収集することができる。
広範囲な実験により、CultureSPAは、一般の能力を損なうことなく、多様な文化へのLCMのアライメントを著しく改善することが示された。
論文 参考訳(メタデータ) (2024-10-16T19:06:08Z) - Navigating the Cultural Kaleidoscope: A Hitchhiker's Guide to Sensitivity in Large Language Models [4.771099208181585]
LLMはますますグローバルなアプリケーションにデプロイされ、さまざまなバックグラウンドを持つユーザが尊敬され、理解されることが保証される。
文化的な害は、これらのモデルが特定の文化的規範と一致しないときに起こり、文化的な価値観の誤った表現や違反をもたらす。
潜在的な文化的不感を露呈するシナリオを通じて、異なる文化的文脈におけるモデルアウトプットを評価するために作成された文化的調和テストデータセットと、多様なアノテータからのフィードバックに基づいた微調整による文化的感受性の回復を目的とした、文化的に整合した選好データセットである。
論文 参考訳(メタデータ) (2024-10-15T18:13:10Z) - How Well Do LLMs Identify Cultural Unity in Diversity? [12.982460687543952]
本稿では,概念の文化的統一性を理解するために,デコーダのみの大規模言語モデル(LLM)を評価するためのベンチマークデータセットを提案する。
CUNITは、10か国で285の伝統的な文化的概念に基づいて構築された1,425の評価例で構成されている。
高い関連性を持つ異文化のコンセプトペアを識別するLLMの能力を評価するために,コントラストマッチングタスクを設計する。
論文 参考訳(メタデータ) (2024-08-09T14:45:22Z) - Extrinsic Evaluation of Cultural Competence in Large Language Models [53.626808086522985]
本稿では,2つのテキスト生成タスクにおける文化能力の評価に焦点をあてる。
我々は,文化,特に国籍の明示的なキューが,そのプロンプトに乱入している場合のモデル出力を評価する。
異なる国におけるアウトプットのテキスト類似性とこれらの国の文化的価値との間には弱い相関関係がある。
論文 参考訳(メタデータ) (2024-06-17T14:03:27Z) - CulturePark: Boosting Cross-cultural Understanding in Large Language Models [63.452948673344395]
本稿では,LLMを利用した文化データ収集のためのマルチエージェント通信フレームワークであるCultureParkを紹介する。
人間の信念、規範、習慣をカプセル化した高品質な異文化対話を生成する。
我々はこれらのモデルを,コンテンツモデレーション,文化的アライメント,文化教育という3つの下流課題にまたがって評価する。
論文 参考訳(メタデータ) (2024-05-24T01:49:02Z) - CultureBank: An Online Community-Driven Knowledge Base Towards Culturally Aware Language Technologies [53.2331634010413]
CultureBankは、ユーザの自己物語に基づいて構築された知識ベースである。
TikTokから12K、Redditから1Kの文化的記述が含まれている。
今後の文化的に意識された言語技術に対する推奨事項を提示する。
論文 参考訳(メタデータ) (2024-04-23T17:16:08Z) - CULTURE-GEN: Revealing Global Cultural Perception in Language Models through Natural Language Prompting [73.94059188347582]
110か国・地域での3つのSOTAモデルの文化認識を,文化条件付き世代を通して8つの文化関連トピックについて明らかにした。
文化条件付き世代は、デフォルトの文化と区別される余分な文化を区別する言語的な「マーカー」から成り立っていることが判明した。
論文 参考訳(メタデータ) (2024-04-16T00:50:43Z) - Massively Multi-Cultural Knowledge Acquisition & LM Benchmarking [48.21982147529661]
本稿では,多文化知識獲得のための新しいアプローチを提案する。
本手法は,文化トピックに関するウィキペディア文書からリンクページの広範囲なネットワークへ戦略的にナビゲートする。
私たちの仕事は、AIにおける文化的格差のギャップを深く理解し、橋渡しするための重要なステップです。
論文 参考訳(メタデータ) (2024-02-14T18:16:54Z) - Not All Countries Celebrate Thanksgiving: On the Cultural Dominance in
Large Language Models [89.94270049334479]
本稿では,大規模言語モデル(LLM)における文化的優位性について述べる。
LLMは、ユーザーが非英語で尋ねるときに期待する文化とは無関係な、不適切な英語文化関連の回答を提供することが多い。
論文 参考訳(メタデータ) (2023-10-19T05:38:23Z) - Cultural Alignment in Large Language Models: An Explanatory Analysis Based on Hofstede's Cultural Dimensions [10.415002561977655]
本研究は,ホフステデの文化次元の枠組みを用いて文化的アライメントを定量化する文化アライメントテスト (Hoftede's CAT) を提案する。
我々は、米国、中国、アラブ諸国といった地域の文化的側面に対して、大規模言語モデル(LLM)を定量的に評価する。
その結果, LLMの文化的アライメントを定量化し, 説明的文化的次元におけるLCMの差異を明らかにすることができた。
論文 参考訳(メタデータ) (2023-08-25T14:50:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。