Experimental Acceleration of Spin Transition in Nitrogen-Vacancy Center
- URL: http://arxiv.org/abs/2412.11370v1
- Date: Mon, 16 Dec 2024 01:58:28 GMT
- Title: Experimental Acceleration of Spin Transition in Nitrogen-Vacancy Center
- Authors: Si-Qi Chen, He Lu,
- Abstract summary: Shortcuts to adiabaticity(STA) enables fast and robust coherent control of quantum system.
Invariant-based inverse engineering is powerful for fast and robust manipulation of NV system.
- Score: 2.82916024971416
- License:
- Abstract: Shortcuts to adiabaticity~(STA) enables fast and robust coherent control of quantum system, which has been well placed in quantum technologies. In particular, inverse engineering STA provides much more freedom for the optimization of shortcut, which alleviates the complexity for experimental realization. Here, we implement a STA technique, known as invariant-based inverse engineering, to speed up the adiabatic control of the electron triplet ground state of a single nitrogen-vacancy~(NV) center. The microwave pulses to drive inversely engineered STA are obtained with space curve quantum control, where the evolution of spin transition is mapped to a three-dimensional closed space curve and the design of shortcut is obtained by optimization over the space curve. We demonstrate the fast and high-fidelity drive of dipole-forbidden transition between two spin sublevels of the ground state. Moreover, we demonstrate the robustness of the spin transition by introducing the detuning of driving microwave field. The acceleration and robustness is further confirmed by the comparison with two traditional Raman control schemes. Our results suggest invariant-based inverse engineering is powerful for fast and robust manipulation of NV system, and thus benefits quantum sensing and quantum computation based on the NV platform.
Related papers
- Full Qubit Control in the NV$^-$ Ground State for Low Field or High Frequency Sensing [0.0]
We present a scheme for the implementation of fast arbitrary qubit gates in the ground state of the negatively charged nitrogen-vacancy defect in diamond.
The protocol is especially useful in the low-field regime and for high-frequency sensing applications.
arXiv Detail & Related papers (2024-07-24T17:58:16Z) - Control of an environmental spin defect beyond the coherence limit of a central spin [79.16635054977068]
We present a scalable approach to increase the size of electronic-spin registers.
We experimentally realize this approach to demonstrate the detection and coherent control of an unknown electronic spin outside the coherence limit of a central NV.
Our work paves the way for engineering larger quantum spin registers with the potential to advance nanoscale sensing, enable correlated noise spectroscopy for error correction, and facilitate the realization of spin-chain quantum wires for quantum communication.
arXiv Detail & Related papers (2023-06-29T17:55:16Z) - Accelerated quantum control in a three-level system by jumping along the
geodesics [11.559161293426564]
We show that the required evolution time for high-fidelity state transfer can be reduced by almost one order of magnitude.
These results provide a powerful tool for coherent spin manipulation in the context of quantum sensing and quantum computation.
arXiv Detail & Related papers (2023-04-20T23:23:40Z) - Pulse-controlled qubit in semiconductor double quantum dots [57.916342809977785]
We present a numerically-optimized multipulse framework for the quantum control of a single-electron charge qubit.
A novel control scheme manipulates the qubit adiabatically, while also retaining high speed and ability to perform a general single-qubit rotation.
arXiv Detail & Related papers (2023-03-08T19:00:02Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Fast adiabatic control of an optomechanical cavity [62.997667081978825]
We present a shortcut to adiabaticity for the control of an optomechanical cavity with two moving mirrors.
We find analytical expressions that give us effective trajectories which implement a STA for the quantum field inside the cavity.
arXiv Detail & Related papers (2022-11-09T15:32:28Z) - Shortcuts to Adiabaticity for Open Systems in Circuit Quantum
Electrodynamics [11.231358835691962]
We present the first experimental demonstration of shortcuts to adiabaticity (STA) for open quantum systems.
We reduce the adiabatic evolution time of a single lossy mode from 800 ns to 100 ns by applying a counterdiabatic driving pulse.
Our results pave the way for accelerating dynamics of open quantum systems and have potential applications in designing fast open-system protocols.
arXiv Detail & Related papers (2021-07-18T11:29:14Z) - Quantum control landscape for ultrafast generation of single-qubit phase
shift quantum gates [68.8204255655161]
We consider the problem of ultrafast controlled generation of single-qubit phase shift quantum gates.
Globally optimal control is a control which realizes the gate with maximal possible fidelity.
Trap is a control which is optimal only locally but not globally.
arXiv Detail & Related papers (2021-04-26T16:38:43Z) - Shortcuts to adiabaticity for open quantum systems and a mixed-state
inverse engineering scheme [0.3058685580689604]
We present the shortcuts to adiabaticity (STAs) of open quantum systems.
We then apply the STAs to speed up the adiabatic steady process.
Our scheme drives open systems from a initial steady state to a target steady state by a controlled Liouvillian.
arXiv Detail & Related papers (2021-03-23T06:14:34Z) - Robust stimulated Raman shortcut-to-adiabatic passage by invariant-based
optimal control [5.290927777455239]
We present a robust approach to speed up STIRAP with inversely invariant-based shortcut to adiabaticity.
This technique has widely theoretical and experimental applications in many fields of physics, chemistry, and beyond.
Results provide an optimal route toward manipulating the evolution of three-level quantum systems in future quantum information processing.
arXiv Detail & Related papers (2021-03-02T00:56:15Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
We introduce a semi-analytic method based on the Dyson expansion that allows us to time-evolve driven quantum systems much faster than standard numerical methods.
We show results of the optimization of a two-qubit gate using transmon qubits in the circuit QED architecture.
arXiv Detail & Related papers (2020-12-16T21:43:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.