Quantum-preserved transport of excitations in Rydberg-dressed atom arrays
- URL: http://arxiv.org/abs/2503.07672v1
- Date: Mon, 10 Mar 2025 00:37:18 GMT
- Title: Quantum-preserved transport of excitations in Rydberg-dressed atom arrays
- Authors: Panpan Li, Jing Qian, Weiping Zhang,
- Abstract summary: We propose a protocol for achieving quantum-preserved transport of excitations using an array of Rydberg-dressed atoms.<n>Our results highlight an easily-implemented scheme for studying the dynamics of spin systems using Rydberg atoms.
- Score: 10.200956633222297
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To transport high-quality quantum state between two distant qubits through one-dimensional spin chains, the perfect state transfer (PST) method serves as the first choice, due to its natively perfect transfer fidelity that is independent of the system dimension. However, the PST requires a precise modulation of the local pulse parameters as well as an accurate timing of dynamic evolution, and is thus very sensitive to variations in practice. Here, we propose a protocol for achieving quantum-preserved transport of excitations using an array of Rydberg-dressed atoms, enabled by optimal control of minimally global parameters. By treating the weak coupling of two marginal array atoms as a perturbation, an effective spin-exchange model with highly tunable interactions between the external weak and the inner strong driving atoms can be established, which allows for coherent excitation transfer even with large atomic position fluctuation. We furthermore show that the existence of long-time excitation propagation unattainable for systems under antiblockade facilitation conditions. Our results highlight an easily-implemented scheme for studying the dynamics of spin systems using Rydberg atoms and may guide the avenue to the engineering of complex many-body dynamics.
Related papers
- Ab-initio variational wave functions for the time-dependent many-electron Schrödinger equation [41.94295877935867]
We introduce a variational approach for fermionic time-dependent wave functions, surpassing mean-field approximations.
We use time-dependent Jastrow factors and backflow transformations, which are enhanced through neural networks parameterizations.
The results showcase the ability of our variational approach to accurately capture the time evolution, providing insight into the quantum dynamics of interacting electronic systems.
arXiv Detail & Related papers (2024-03-12T09:37:22Z) - Strong Spin-Motion Coupling in the Ultrafast Dynamics of Rydberg Atoms [0.0]
We show a strong spin-motion coupling emerging from the large variation of the interaction potential over the wavefunction spread.
We propose a novel approach to tune arbitrarily the strength of the spin-motion coupling relative to the motional energy scale set by trapping potentials.
arXiv Detail & Related papers (2023-11-27T07:04:02Z) - Quantum Gate Optimization for Rydberg Architectures in the Weak-Coupling
Limit [55.05109484230879]
We demonstrate machine learning assisted design of a two-qubit gate in a Rydberg tweezer system.
We generate optimal pulse sequences that implement a CNOT gate with high fidelity.
We show that local control of single qubit operations is sufficient for performing quantum computation on a large array of atoms.
arXiv Detail & Related papers (2023-06-14T18:24:51Z) - Dissipative preparation and stabilization of many-body quantum states in
a superconducting qutrit array [55.41644538483948]
We present and analyze a protocol for driven-dissipatively preparing and stabilizing a manifold of quantum manybody entangled states.
We perform theoretical modeling of this platform via pulse-level simulations based on physical features of real devices.
Our work shows the capacity of driven-dissipative superconducting cQED systems to host robust and self-corrected quantum manybody states.
arXiv Detail & Related papers (2023-03-21T18:02:47Z) - Quantum Fluctuation Dynamics of Dispersive Superradiant Pulses in a
Hybrid Light-Matter System [0.0]
We consider theoretically a driven-dissipative quantum many-body system consisting of an atomic ensemble in a single-mode optical cavity.
In this hybrid light-matter system the interplay between coherent and dissipative processes leads to superradiant pulses with a build-up of strong correlations.
arXiv Detail & Related papers (2023-02-16T04:34:33Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Coherent Atom Transport via Enhanced Shortcuts to Adiabaticity:
Double-Well Optical Lattice [0.0]
We study fast atomic transport in a moving em double-well optical lattice.
We use two classes of quantum-control methods: shortcuts to adiabaticity (STA) and enhanced STA.
This study has direct implications for neutral-atom quantum computing.
arXiv Detail & Related papers (2021-12-28T08:39:49Z) - Quantum transport and localization in 1d and 2d tight-binding lattices [39.26291658500249]
Particle transport and localization phenomena in condensed-matter systems can be modeled using a tight-binding lattice Hamiltonian.
Here, we experimentally study quantum transport in one-dimensional and two-dimensional tight-binding lattices, emulated by a fully controllable $3 times 3$ array of superconducting qubits.
arXiv Detail & Related papers (2021-07-11T12:36:12Z) - Coherent ground-state transport of neutral atoms [1.433758865948252]
We construct a theoretical model via second-order perturbation theory to realize a long-range coherent transport inside the ground-state manifold of neutral atoms system.
This model can be used to simulate various single-body physics phenomena such as Heisenberg $XX$ spin chain restricted in the single-excitation manifold.
arXiv Detail & Related papers (2021-07-06T03:59:15Z) - Controlling many-body dynamics with driven quantum scars in Rydberg atom
arrays [41.74498230885008]
We experimentally investigate non-equilibrium dynamics following rapid quenches in a many-body system composed of 3 to 200 strongly interacting qubits in one and two spatial dimensions.
We discover that scar revivals can be stabilized by periodic driving, which generates a robust subharmonic response akin to discrete time-crystalline order.
arXiv Detail & Related papers (2020-12-22T19:00:02Z) - Efficient entanglement of spin qubits mediated by a hot mechanical
oscillator [0.0]
Localized electronic and nuclear spin qubits in the solid state constitute a promising platform for storage and manipulation of quantum information.
We propose and analyze a scheme that employs a parity measurement in a decoherence free subspace to enable fast and robust entanglement generation.
We find that high-fidelity entanglement at cryogenic and even ambient temperatures is feasible with realistic parameters, and show that the entangled pair can be subsequently leveraged for deterministic controlled-NOT operations.
arXiv Detail & Related papers (2020-11-05T02:30:18Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.