論文の概要: ChatTime: A Unified Multimodal Time Series Foundation Model Bridging Numerical and Textual Data
- arxiv url: http://arxiv.org/abs/2412.11376v1
- Date: Mon, 16 Dec 2024 02:04:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 14:01:11.607215
- Title: ChatTime: A Unified Multimodal Time Series Foundation Model Bridging Numerical and Textual Data
- Title(参考訳): ChatTime: 数値データとテキストデータを結合した統合マルチモーダル時系列基盤モデル
- Authors: Chengsen Wang, Qi Qi, Jingyu Wang, Haifeng Sun, Zirui Zhuang, Jinming Wu, Lei Zhang, Jianxin Liao,
- Abstract要約: ChatTimeは時系列とテキスト処理のための統合されたフレームワークである。
アウトオブボックスのマルチモーダル時系列基盤モデルとして、ChatTimeはゼロショット予測機能を提供する。
複数のタスクやシナリオでChatTimeの優れたパフォーマンスを検証するために、一連の実験を設計する。
- 参考スコア(独自算出の注目度): 26.300515935897415
- License:
- Abstract: Human experts typically integrate numerical and textual multimodal information to analyze time series. However, most traditional deep learning predictors rely solely on unimodal numerical data, using a fixed-length window for training and prediction on a single dataset, and cannot adapt to different scenarios. The powered pre-trained large language model has introduced new opportunities for time series analysis. Yet, existing methods are either inefficient in training, incapable of handling textual information, or lack zero-shot forecasting capability. In this paper, we innovatively model time series as a foreign language and construct ChatTime, a unified framework for time series and text processing. As an out-of-the-box multimodal time series foundation model, ChatTime provides zero-shot forecasting capability and supports bimodal input/output for both time series and text. We design a series of experiments to verify the superior performance of ChatTime across multiple tasks and scenarios, and create four multimodal datasets to address data gaps. The experimental results demonstrate the potential and utility of ChatTime.
- Abstract(参考訳): 人間の専門家は通常、時系列を分析するために数値とテキストのマルチモーダル情報を統合する。
しかし、従来のディープラーニング予測器のほとんどは、単一のデータセットでトレーニングと予測を行うために固定長のウィンドウを使用して、単調な数値データのみに依存しており、異なるシナリオに対応できない。
パワード・トレーニング済みの大規模言語モデルでは,時系列解析の新しい機会が導入された。
しかし、既存の手法はトレーニングの効率が悪く、テキスト情報を扱うことができないか、ゼロショット予測能力がないかのいずれかである。
本稿では,時系列を外国語として革新的にモデル化し,時系列処理とテキスト処理のための統合フレームワークChatTimeを構築した。
アウトオブボックスのマルチモーダル時系列基盤モデルとして、ChatTimeはゼロショット予測機能を提供し、時系列とテキストの両方でバイモーダル入力/出力をサポートする。
複数のタスクやシナリオでChatTimeの優れたパフォーマンスを検証するための一連の実験を設計し、データギャップに対処するための4つのマルチモーダルデータセットを作成します。
実験結果はChatTimeの可能性と有用性を示している。
関連論文リスト
- TimeCAP: Learning to Contextualize, Augment, and Predict Time Series Events with Large Language Model Agents [52.13094810313054]
TimeCAPは、時系列データのコンテキスト化ツールとしてLarge Language Models(LLM)を創造的に利用する時系列処理フレームワークである。
TimeCAPには2つの独立したLCMエージェントが組み込まれており、1つは時系列のコンテキストをキャプチャするテキスト要約を生成し、もう1つはより情報のある予測を行うためにこのリッチな要約を使用する。
実世界のデータセットによる実験結果から,TimeCAPは時系列イベント予測の最先端手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2025-02-17T04:17:27Z) - Language in the Flow of Time: Time-Series-Paired Texts Weaved into a Unified Temporal Narrative [65.84249211767921]
テキスト・アズ・タイム・シリーズ(英語版) (TaTS) は時系列の補助変数であると考えている。
TaTSは、既存の数値のみの時系列モデルにプラグインすることができ、ペア化されたテキストで時系列データを効率的に処理することができる。
論文 参考訳(メタデータ) (2025-02-13T03:43:27Z) - Unveiling the Potential of Text in High-Dimensional Time Series Forecasting [12.707274099874384]
本稿では,時系列モデルと大規模言語モデルを統合する新しいフレームワークを提案する。
マルチモーダルモデルにインスパイアされた本手法では, 時系列データとテキストデータを重塔構造で結合する。
テキストを組み込んだ実験により,高次元時系列予測性能が向上することが示された。
論文 参考訳(メタデータ) (2025-01-13T04:10:45Z) - Text2Freq: Learning Series Patterns from Text via Frequency Domain [8.922661807801227]
Text2Freqは、周波数領域を介してテキストと時系列データを統合したモダリティモデルである。
実物価格と合成テキストのペアデータセットによる実験により,Text2Freqが最先端のパフォーマンスを実現することを示す。
論文 参考訳(メタデータ) (2024-11-01T16:11:02Z) - Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
コンテキスト is Key" (CiK) は、数値データを多種多様なテキストコンテキストと組み合わせた予測ベンチマークである。
我々は,統計モデル,時系列基礎モデル,LLMに基づく予測モデルなど,さまざまなアプローチを評価する。
提案手法は,提案するベンチマークにおいて,他の試験手法よりも優れる簡易かつ効果的なLCMプロンプト法である。
論文 参考訳(メタデータ) (2024-10-24T17:56:08Z) - Large Language Models Are Zero-Shot Time Series Forecasters [48.73953666153385]
時系列を数値桁の列として符号化することにより、テキストの次トーケン予測として時系列予測をフレーム化することができる。
GPT-3 や LLaMA-2 のような大規模言語モデル (LLM) は、ダウンストリームタスクでトレーニングされた目的構築された時系列モデルの性能に匹敵する、あるいはそれ以上のレベルにおいて、驚くほどゼロショット・エクスポレート・時系列を生成できる。
論文 参考訳(メタデータ) (2023-10-11T19:01:28Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
時系列予測は多くの実世界の力学系において重要な意味を持つ。
時系列予測のための大規模言語モデルを再利用するための再プログラミングフレームワークであるTime-LLMを提案する。
Time-LLMは、最先端の特殊な予測モデルよりも優れた、強力な時系列学習者である。
論文 参考訳(メタデータ) (2023-10-03T01:31:25Z) - Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods
in Natural Language Processing [78.8500633981247]
本稿では,自然言語処理における新たなパラダイムにおける研究成果の探索と整理を行う。
入力xを取り込んで出力yをP(y|x)として予測するようにモデルを訓練する従来の教師付き学習とは異なり、プロンプトベースの学習は直接テキストの確率をモデル化する言語モデルに基づいている。
論文 参考訳(メタデータ) (2021-07-28T18:09:46Z) - Human-like Time Series Summaries via Trend Utility Estimation [13.560018516096754]
本稿では,時系列の人間的な記述を生成するためのモデルを提案する。
本システムは時系列データからパターンを見つけ,人間の行動の経験的観察に基づいてこれらのパターンをランク付けする。
本システムの出力は,人間による同じデータの要約に一致させようとする時系列の自然言語記述である。
論文 参考訳(メタデータ) (2020-01-16T06:09:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。