STDHL: Spatio-Temporal Dynamic Hypergraph Learning for Wind Power Forecasting
- URL: http://arxiv.org/abs/2412.11393v1
- Date: Mon, 16 Dec 2024 02:43:29 GMT
- Title: STDHL: Spatio-Temporal Dynamic Hypergraph Learning for Wind Power Forecasting
- Authors: Xiaochong Dong, Xuemin Zhang, Ming Yang, Shengwei Mei,
- Abstract summary: We present a dynamic hypergraph learning (STDHL) model to represent spatial features among wind farms.
STDHL model incorporates novel dynamic hypergraph convolutional layer to model dynamic spatial correlations and grouped temporal convolutional layer for channel-independent temporal modeling.
- Score: 5.003934238878358
- License:
- Abstract: Leveraging spatio-temporal correlations among wind farms can significantly enhance the accuracy of ultra-short-term wind power forecasting. However, the complex and dynamic nature of these correlations presents significant modeling challenges. To address this, we propose a spatio-temporal dynamic hypergraph learning (STDHL) model. This model uses a hypergraph structure to represent spatial features among wind farms. Unlike traditional graph structures, which only capture pair-wise node features, hypergraphs create hyperedges connecting multiple nodes, enabling the representation and transmission of higher-order spatial features. The STDHL model incorporates a novel dynamic hypergraph convolutional layer to model dynamic spatial correlations and a grouped temporal convolutional layer for channel-independent temporal modeling. The model uses spatio-temporal encoders to extract features from multi-source covariates, which are mapped to quantile results through a forecast decoder. Experimental results using the GEFCom dataset show that the STDHL model outperforms existing state-of-the-art methods. Furthermore, an in-depth analysis highlights the critical role of spatio-temporal covariates in improving ultra-short-term forecasting accuracy.
Related papers
- HyperFLINT: Hypernetwork-based Flow Estimation and Temporal Interpolation for Scientific Ensemble Visualization [26.472939569860607]
HyperFLINT is a novel deep learning-based approach for estimating flow fields, temporally interpolating fields, and facilitating parameter space exploration in ensemble data.
A series of experiments demonstrates HyperFLINT's significantly improved performance in flow field estimation, as well as its potential in enabling parameter space exploration.
arXiv Detail & Related papers (2024-12-05T12:01:20Z) - How to Bridge Spatial and Temporal Heterogeneity in Link Prediction? A Contrastive Method [11.719027225797037]
We propose a novel textbfContrastive Learning-based textbfLink textbfPrediction model, textbfCLP.
Our mymodel consistently outperforms the state-of-the-art models, demonstrating an average improvement of 10.10%, 13.44% in terms of AUC and AP.
arXiv Detail & Related papers (2024-11-01T14:20:53Z) - KFD-NeRF: Rethinking Dynamic NeRF with Kalman Filter [49.85369344101118]
We introduce KFD-NeRF, a novel dynamic neural radiance field integrated with an efficient and high-quality motion reconstruction framework based on Kalman filtering.
Our key idea is to model the dynamic radiance field as a dynamic system whose temporally varying states are estimated based on two sources of knowledge: observations and predictions.
Our KFD-NeRF demonstrates similar or even superior performance within comparable computational time and state-of-the-art view synthesis performance with thorough training.
arXiv Detail & Related papers (2024-07-18T05:48:24Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
Weather forecasting plays a critical role in various sectors, driving decision-making and risk management.
Traditional methods often struggle to capture the complex dynamics of meteorological systems.
We propose a novel framework designed to address these challenges and enhance the accuracy of weather prediction.
arXiv Detail & Related papers (2024-05-29T08:00:15Z) - SFTformer: A Spatial-Frequency-Temporal Correlation-Decoupling
Transformer for Radar Echo Extrapolation [15.56594998349013]
The spatial morphology and temporal evolution of radar echoes exhibit a certain degree of correlation, yet they also possess independent characteristics.
To effectively model the dynamics of radar echoes, we propose a Spatial-Frequency-Temporal correlation-decoupling Transformer (SFTformer)
Experimental results on the HKO-7 and ChinaNorth-2021 dataset demonstrate the superior performance of SFTfomer in short (1h), mid (2h), and long-term (3h) precipitation nowcasting.
arXiv Detail & Related papers (2024-02-28T04:43:41Z) - FourierGNN: Rethinking Multivariate Time Series Forecasting from a Pure
Graph Perspective [48.00240550685946]
Current state-of-the-art graph neural network (GNN)-based forecasting methods usually require both graph networks (e.g., GCN) and temporal networks (e.g., LSTM) to capture inter-series (spatial) dynamics and intra-series (temporal) dependencies, respectively.
We propose a novel Fourier Graph Neural Network (FourierGNN) by stacking our proposed Fourier Graph Operator (FGO) to perform matrix multiplications in Fourier space.
Our experiments on seven datasets have demonstrated superior performance with higher efficiency and fewer parameters compared with state-of-the-
arXiv Detail & Related papers (2023-11-10T17:13:26Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
We propose a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE)
Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures.
Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing.
arXiv Detail & Related papers (2022-02-17T02:17:31Z) - Hyperbolic Variational Graph Neural Network for Modeling Dynamic Graphs [77.33781731432163]
We learn dynamic graph representation in hyperbolic space, for the first time, which aims to infer node representations.
We present a novel Hyperbolic Variational Graph Network, referred to as HVGNN.
In particular, to model the dynamics, we introduce a Temporal GNN (TGNN) based on a theoretically grounded time encoding approach.
arXiv Detail & Related papers (2021-04-06T01:44:15Z) - Temporal Graph Modeling for Skeleton-based Action Recognition [25.788239844759246]
We propose a Temporal Enhanced Graph Convolutional Network (TE-GCN) to capture complex temporal dynamic.
The constructed temporal relation graph explicitly builds connections between semantically related temporal features.
Experiments are performed on two widely used large-scale datasets.
arXiv Detail & Related papers (2020-12-16T09:02:47Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
We propose a higher-order LSTM model that can efficiently learn long-term correlations in the video sequence.
This is accomplished through a novel tensor train module that performs prediction by combining convolutional features across time.
Our results achieve state-of-the-art performance-art in a wide range of applications and datasets.
arXiv Detail & Related papers (2020-02-21T05:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.