Graph Fourier Neural ODEs: Modeling Spatial-temporal Multi-scales in Molecular Dynamics
- URL: http://arxiv.org/abs/2411.01600v2
- Date: Thu, 13 Mar 2025 21:08:29 GMT
- Title: Graph Fourier Neural ODEs: Modeling Spatial-temporal Multi-scales in Molecular Dynamics
- Authors: Fang Sun, Zijie Huang, Haixin Wang, Huacong Tang, Xiao Luo, Wei Wang, Yizhou Sun,
- Abstract summary: GF-NODE integrates a graph Fourier transform for spatial frequency decomposition with a Neural ODE framework for continuous-time evolution.<n>We show that GF-NODE achieves state-of-the-art accuracy while preserving essential geometrical features over extended simulations.<n>These findings highlight the promise of bridging spectral decomposition with continuous-time modeling to improve the robustness and predictive power of MD simulations.
- Score: 38.53044197103943
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurately predicting long-horizon molecular dynamics (MD) trajectories remains a significant challenge, as existing deep learning methods often struggle to retain fidelity over extended simulations. We hypothesize that one key factor limiting accuracy is the difficulty of capturing interactions that span distinct spatial and temporal scales-ranging from high-frequency local vibrations to low-frequency global conformational changes. To address these limitations, we propose Graph Fourier Neural ODEs (GF-NODE), integrating a graph Fourier transform for spatial frequency decomposition with a Neural ODE framework for continuous-time evolution. Specifically, GF-NODE first decomposes molecular configurations into multiple spatial frequency modes using the graph Laplacian, then evolves the frequency components in time via a learnable Neural ODE module that captures both local and global dynamics, and finally reconstructs the updated molecular geometry through an inverse graph Fourier transform. By explicitly modeling high- and low-frequency phenomena in this unified pipeline, GF-NODE more effectively captures long-range correlations and local fluctuations alike. Experimental results on challenging MD benchmarks, including MD17 and alanine dipeptide, demonstrate that GF-NODE achieves state-of-the-art accuracy while preserving essential geometrical features over extended simulations. These findings highlight the promise of bridging spectral decomposition with continuous-time modeling to improve the robustness and predictive power of MD simulations.
Related papers
- LOGLO-FNO: Efficient Learning of Local and Global Features in Fourier Neural Operators [20.77877474840923]
High-frequency information is a critical challenge in machine learning.
Deep neural nets exhibit the so-called spectral bias toward learning low-frequency components.
We propose a novel frequency-sensitive loss term based on radially binned spectral errors.
arXiv Detail & Related papers (2025-04-05T19:35:04Z) - Teaching Artificial Intelligence to Perform Rapid, Resolution-Invariant Grain Growth Modeling via Fourier Neural Operator [0.0]
Microstructural evolution plays a critical role in shaping the physical, optical, and electronic properties of materials.
Traditional phase-field modeling accurately simulates these phenomena but is computationally intensive.
This study introduces a novel approach utilizing Fourier Neural Operator (FNO) to achieve resolution-invariant modeling.
arXiv Detail & Related papers (2025-03-18T11:19:08Z) - STDHL: Spatio-Temporal Dynamic Hypergraph Learning for Wind Power Forecasting [5.003934238878358]
We present a dynamic hypergraph learning (STDHL) model to represent spatial features among wind farms.
STDHL model incorporates novel dynamic hypergraph convolutional layer to model dynamic spatial correlations and grouped temporal convolutional layer for channel-independent temporal modeling.
arXiv Detail & Related papers (2024-12-16T02:43:29Z) - Point Cloud Denoising With Fine-Granularity Dynamic Graph Convolutional Networks [58.050130177241186]
Noise perturbations often corrupt 3-D point clouds, hindering downstream tasks such as surface reconstruction, rendering, and further processing.
This paper introduces finegranularity dynamic graph convolutional networks called GDGCN, a novel approach to denoising in 3-D point clouds.
arXiv Detail & Related papers (2024-11-21T14:19:32Z) - Geometric Trajectory Diffusion Models [58.853975433383326]
Generative models have shown great promise in generating 3D geometric systems.
Existing approaches only operate on static structures, neglecting the fact that physical systems are always dynamic in nature.
We propose geometric trajectory diffusion models (GeoTDM), the first diffusion model for modeling the temporal distribution of 3D geometric trajectories.
arXiv Detail & Related papers (2024-10-16T20:36:41Z) - PhyMPGN: Physics-encoded Message Passing Graph Network for spatiotemporal PDE systems [31.006807854698376]
We propose a new graph learning approach, namely, Physics-encoded Message Passing Graph Network (PhyMPGN)
We incorporate a GNN into a numerical integrator to approximate the temporal marching of partialtemporal dynamics for a given PDE system.
PhyMPGN is capable of accurately predicting various types of operatortemporal dynamics on coarse unstructured meshes.
arXiv Detail & Related papers (2024-10-02T08:54:18Z) - Convergence of mean-field Langevin dynamics: Time and space
discretization, stochastic gradient, and variance reduction [49.66486092259376]
The mean-field Langevin dynamics (MFLD) is a nonlinear generalization of the Langevin dynamics that incorporates a distribution-dependent drift.
Recent works have shown that MFLD globally minimizes an entropy-regularized convex functional in the space of measures.
We provide a framework to prove a uniform-in-time propagation of chaos for MFLD that takes into account the errors due to finite-particle approximation, time-discretization, and gradient approximation.
arXiv Detail & Related papers (2023-06-12T16:28:11Z) - Towards Predicting Equilibrium Distributions for Molecular Systems with
Deep Learning [60.02391969049972]
We introduce a novel deep learning framework, called Distributional Graphormer (DiG), in an attempt to predict the equilibrium distribution of molecular systems.
DiG employs deep neural networks to transform a simple distribution towards the equilibrium distribution, conditioned on a descriptor of a molecular system.
arXiv Detail & Related papers (2023-06-08T17:12:08Z) - Implicit Transfer Operator Learning: Multiple Time-Resolution Surrogates
for Molecular Dynamics [8.35780131268962]
We present Implict Transfer Operator (ITO) Learning, a framework to learn surrogates of the simulation process with multiple time-resolutions.
We also present a coarse-grained CG-SE3-ITO model which can quantitatively model all-atom molecular dynamics.
arXiv Detail & Related papers (2023-05-29T12:19:41Z) - Towards Complex Dynamic Physics System Simulation with Graph Neural ODEs [75.7104463046767]
This paper proposes a novel learning based simulation model that characterizes the varying spatial and temporal dependencies in particle systems.
We empirically evaluate GNSTODE's simulation performance on two real-world particle systems, Gravity and Coulomb.
arXiv Detail & Related papers (2023-05-21T03:51:03Z) - Transform Once: Efficient Operator Learning in Frequency Domain [69.74509540521397]
We study deep neural networks designed to harness the structure in frequency domain for efficient learning of long-range correlations in space or time.
This work introduces a blueprint for frequency domain learning through a single transform: transform once (T1)
arXiv Detail & Related papers (2022-11-26T01:56:05Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
Multi-fidelity surrogate modeling reduces the computational cost by fusing different simulation outputs.
We propose Multi-fidelity Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model for multi-fidelity surrogate modeling.
We evaluate MF-HNP on epidemiology and climate modeling tasks, achieving competitive performance in terms of accuracy and uncertainty estimation.
arXiv Detail & Related papers (2022-06-10T04:54:13Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
Molecular dynamics (MD) simulations allow atomistic insights into chemical and biological processes.
Recently, machine learned force fields (MLFFs) emerged as an alternative means to execute MD simulations.
This work proposes a general approach to constructing accurate MLFFs for large-scale molecular simulations.
arXiv Detail & Related papers (2022-05-17T13:08:28Z) - Simulate Time-integrated Coarse-grained Molecular Dynamics with
Multi-Scale Graph Networks [4.444748822792469]
Learning-based force fields have made significant progress in accelerating ab-initio MD simulation but are not fast enough for many real-world applications.
We aim to address these challenges by learning a multi-scale graph neural network that directly simulates coarse-grained MD with a very large time step.
arXiv Detail & Related papers (2022-04-21T18:07:08Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
We propose a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE)
Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures.
Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing.
arXiv Detail & Related papers (2022-02-17T02:17:31Z) - Super-resolution in Molecular Dynamics Trajectory Reconstruction with
Bi-Directional Neural Networks [0.0]
We explore different machine learning (ML) methodologies to increase the resolution of molecular dynamics trajectories on-demand within a post-processing step.
We have found that Bi-LSTMs are the best performing models; by utilizing the local time-symmetry of thermostated trajectories they can even learn long-range correlations and display high robustness to noisy dynamics across molecular complexity.
arXiv Detail & Related papers (2022-01-02T23:00:30Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
We study how to generate molecule conformations (textiti.e., 3D structures) from a molecular graph.
We propose a novel probabilistic framework to generate valid and diverse conformations given a molecular graph.
arXiv Detail & Related papers (2021-02-20T03:17:58Z) - Molecular Latent Space Simulators [8.274472944075713]
We propose latent space simulators (LSS) to learn kinetic models for continuous all-atom simulation trajectories.
We demonstrate the approach in an application to Trp-protein to produce novel ultra-long synthetic folding trajectories.
arXiv Detail & Related papers (2020-07-01T20:05:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.