論文の概要: Scale-adaptive UAV Geo-localization via Height-aware Partition Learning
- arxiv url: http://arxiv.org/abs/2412.11535v3
- Date: Wed, 02 Apr 2025 11:36:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 15:43:07.72123
- Title: Scale-adaptive UAV Geo-localization via Height-aware Partition Learning
- Title(参考訳): ハイト・アウェア・パーティション・ラーニングによるスケール適応型UAV測地
- Authors: Quan Chen, Tingyu Wang, Rongfeng Lu, Yu Liu, Bolun Zheng, Zhedong Zheng,
- Abstract要約: UAVのジオローカライゼーションは、ドローンが撮影した画像と衛星の視界との間に大きな違いがあるため、大きな課題に直面している。
既存のメソッドは通常、ビュー間で一貫したスケーリングファクタを仮定し、事前に定義されたパーティションアライメントに依存します。
本研究では、既知のドローンの飛行高度を利用して、スケール要因を予測し、特徴抽出を動的に調整するスケール適応型分割学習フレームワークを提案する。
- 参考スコア(独自算出の注目度): 22.72128308133626
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: UAV Geo-Localization faces significant challenges due to the drastic appearance discrepancy between dronecaptured images and satellite views. Existing methods typically assume a consistent scaling factor across views and rely on predefined partition alignment to extract viewpoint-invariant representations through part-level feature construction. However, this scaling assumption often fails in real-world scenarios, where variations in drone flight states lead to scale mismatches between cross-view images, resulting in severe performance degradation. To address this issue, we propose a scale-adaptive partition learning framework that leverages known drone flight height to predict scale factors and dynamically adjust feature extraction. Our key contribution is a height-aware adjustment strategy, which calculates the relative height ratio between drone and satellite views, dynamically adjusting partition sizes to explicitly align semantic information between partition pairs. This strategy is integrated into a Scale-adaptive Local Partition Network (SaLPN), building upon an existing square partition strategy to extract both finegrained and global features. Additionally, we propose a saliencyguided refinement strategy to enhance part-level features, further improving retrieval accuracy. Extensive experiments validate that our height-aware, scale-adaptive approach achieves stateof-the-art geo-localization accuracy in various scale-inconsistent scenarios and exhibits strong robustness against scale variations. The code will be made publicly available.
- Abstract(参考訳): UAVのジオローカライゼーションは、ドローンが撮影した画像と衛星の視界との間に大きな違いがあるため、大きな課題に直面している。
既存のメソッドは通常、ビュー間で一貫したスケーリング係数を仮定し、部分レベルの特徴構成を通じて視点不変表現を抽出するために、事前に定義された分割アライメントに依存します。
しかし、このスケーリングの前提はしばしば現実のシナリオで失敗し、ドローンの飛行状態の変化は、クロスビュー画像間のミスマッチをスケールし、パフォーマンスが著しく低下する。
この問題に対処するために、既知のドローンの飛行高度を利用してスケール要因を予測し、特徴抽出を動的に調整するスケール適応型分割学習フレームワークを提案する。
ドローンと衛星ビューの相対的高さ比を計算し、パーティションサイズを動的に調整し、パーティションペア間のセマンティック情報を明示的に調整する。
この戦略は、スケール適応ローカルパーティションネットワーク(SaLPN)に統合され、既存の正方形パーティション戦略に基づいて、きめ細かい機能とグローバルな機能の両方を抽出する。
さらに,部分レベルの特徴を向上し,精度の向上を図るために,サリエンシ誘導型改良戦略を提案する。
大規模不整合のシナリオにおいて,我々の高度適応型アプローチが最先端のジオローカライゼーション精度を実現し,スケール変動に対して強い堅牢性を示すことを実証した。
コードは公開されます。
関連論文リスト
- Dita: Scaling Diffusion Transformer for Generalist Vision-Language-Action Policy [56.424032454461695]
本稿では,Transformerアーキテクチャを活用した拡張性のあるフレームワークであるDitaについて紹介する。
Ditaはコンテキスト内コンディショニング(context conditioning)を採用しており、歴史的観察から生の視覚トークンと識別されたアクションをきめ細やかなアライメントを可能にする。
Ditaは、さまざまなカメラパースペクティブ、観察シーン、タスク、アクションスペースの横断的なデータセットを効果的に統合する。
論文 参考訳(メタデータ) (2025-03-25T15:19:56Z) - Multi-Level Embedding and Alignment Network with Consistency and Invariance Learning for Cross-View Geo-Localization [2.733505168507872]
CVGL(Cross-View Geo-Localization)は、最もよく似たGPSタグ付き衛星画像を取得することで、ドローン画像のローカライゼーションを決定する。
既存の手法は、モデルの性能を改善する際に、計算と記憶の要求が増大する問題をしばしば見落としている。
マルチレベル・エンベディング・アライメント・ネットワーク(MEAN)と呼ばれる軽量なアライメント・ネットワークを提案する。
論文 参考訳(メタデータ) (2024-12-19T13:10:38Z) - AGL-NET: Aerial-Ground Cross-Modal Global Localization with Varying Scales [45.315661330785275]
我々は,LiDAR点雲と衛星地図を用いたグローバルローカライゼーションのための新しい学習手法であるAGL-NETを提案する。
我々は,特徴マッチングのための画像と点間の表現ギャップを埋めること,グローバルビューとローカルビューのスケールの相違に対処すること,という2つの重要な課題に取り組む。
論文 参考訳(メタデータ) (2024-04-04T04:12:30Z) - SDPL: Shifting-Dense Partition Learning for UAV-View Geo-Localization [27.131867916908156]
クロスビューなジオローカライゼーションは、異なるプラットフォームから同じターゲットの画像にマッチすることを目的としている。
本稿では,パートベース表現学習,シフト・デンス分割学習を紹介する。
SDPLは位置ずれに対して頑健であり、2つの一般的なベンチマークで反復的に動作することを示す。
論文 参考訳(メタデータ) (2024-03-07T03:07:54Z) - Scale Optimization Using Evolutionary Reinforcement Learning for Object
Detection on Drone Imagery [17.26524675722299]
本稿では, 粗い物体検出フレームワークに組み込まれた進化的強化学習エージェントを提案し, 画像中の物体のより効率的な検出のために, スケールを最適化する。
スケール最適化の指針として, 局所化精度, 予測ラベルの精度, 近傍のパッチ間のスケール一貫性のセットを設計する。
論文 参考訳(メタデータ) (2023-12-23T10:49:55Z) - Adaptive Spot-Guided Transformer for Consistent Local Feature Matching [64.30749838423922]
局所的特徴マッチングのための適応スポットガイド変換器(ASTR)を提案する。
ASTRは、統一された粗いアーキテクチャにおける局所的な一貫性とスケールのバリエーションをモデル化する。
論文 参考訳(メタデータ) (2023-03-29T12:28:01Z) - Adaptive Local-Component-aware Graph Convolutional Network for One-shot
Skeleton-based Action Recognition [54.23513799338309]
骨格に基づく行動認識のための適応的局所成分認識グラフ畳み込みネットワークを提案する。
我々の手法はグローバルな埋め込みよりも強力な表現を提供し、我々のモデルが最先端に到達するのに役立ちます。
論文 参考訳(メタデータ) (2022-09-21T02:33:07Z) - Homography Decomposition Networks for Planar Object Tracking [11.558401177707312]
平面オブジェクトトラッキングは、ロボット工学、ビジュアルサーボ、ビジュアルSLAMといったAIアプリケーションにおいて重要な役割を果たす。
本稿では, ホログラフィ変換を2つのグループに分解することで, 条件数を大幅に削減し, 安定化する新しいホモグラフィ分解ネットワークを提案する。
論文 参考訳(メタデータ) (2021-12-15T06:13:32Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
半教師付きドメイン適応 (SSDA) は,1) アノテーションの低いデータに過度に適合する手法と,2) ドメイン間の分散シフトの両方を克服しなければならない課題である。
SSLとDAの協調を正規化するための適応型構造学習手法を提案する。
論文 参考訳(メタデータ) (2021-12-12T06:11:16Z) - Learning to Aggregate Multi-Scale Context for Instance Segmentation in
Remote Sensing Images [28.560068780733342]
特徴抽出のプロセスを改善するために,新しいコンテキスト集約ネットワーク(CATNet)を提案する。
提案モデルは,高密度特徴ピラミッドネットワーク(DenseFPN),空間コンテキストピラミッド(SCP),階層的関心抽出器(HRoIE)の3つの軽量プラグアンドプレイモジュールを利用する。
論文 参考訳(メタデータ) (2021-11-22T08:55:25Z) - Bi-level Feature Alignment for Versatile Image Translation and
Manipulation [88.5915443957795]
GAN(Generative Adversarial Network)は画像翻訳と操作において大きな成功を収めている。
忠実なスタイル制御を備えた高忠実な画像生成は、コンピュータビジョンにおいて依然として大きな課題である。
本稿では,高精度なセマンティック・スタイル・ガイダンスを実現する多機能な画像翻訳・操作フレームワークを提案する。
論文 参考訳(メタデータ) (2021-07-07T05:26:29Z) - G$^2$DA: Geometry-Guided Dual-Alignment Learning for RGB-Infrared Person
Re-Identification [3.909938091041451]
RGB-IRの人物再識別は、異種間の興味のある人物を検索することを目的としている。
本稿では,サンプルレベルのモダリティ差に対処するための幾何誘導デュアルアライメント学習フレームワーク(G$2$DA)を提案する。
論文 参考訳(メタデータ) (2021-06-15T03:14:31Z) - Spatial-spectral Hyperspectral Image Classification via Multiple Random
Anchor Graphs Ensemble Learning [88.60285937702304]
本稿では,複数のランダムアンカーグラフアンサンブル学習(RAGE)を用いた空間スペクトルHSI分類手法を提案する。
まず、各選択されたバンドのより記述的な特徴を抽出し、局所的な構造と領域の微妙な変化を保存するローカルバイナリパターンを採用する。
次に,アンカーグラフの構成に適応隣接代入を導入し,計算複雑性を低減した。
論文 参考訳(メタデータ) (2021-03-25T09:31:41Z) - Domain-invariant Similarity Activation Map Contrastive Learning for
Retrieval-based Long-term Visual Localization [30.203072945001136]
本研究では,多領域画像変換による領域不変特徴抽出のために,確率論的に一般アーキテクチャを定式化する。
そして、より精密な局所化のために、新しい勾配重み付き類似性活性化写像損失(Grad-SAM)を組み込んだ。
CMUSeasonsデータセットにおける提案手法の有効性を検証するために大規模な実験が行われた。
我々の性能は、最先端のイメージベースのローカライゼーションベースラインを中あるいは高精度で上回るか、あるいは上回る。
論文 参考訳(メタデータ) (2020-09-16T14:43:22Z) - Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization [54.00111565818903]
クロスビューなジオローカライゼーションは、異なるプラットフォームから同じ地理的ターゲットの画像を見つけることである。
既存の手法は通常、画像センター内の地理的ターゲットの微細な特徴をマイニングすることに集中している。
我々は、文脈情報を活用するために、ローカルパターンネットワーク(LPN)と呼ばれるシンプルで効果的なディープニューラルネットワークを導入する。
論文 参考訳(メタデータ) (2020-08-26T16:06:11Z) - Multi-view Drone-based Geo-localization via Style and Spatial Alignment [47.95626612936813]
マルチビュー・マルチソース・ジオローカライゼーションは、ドローンビュー画像と衛星ビュー画像とを事前アノテーション付きGPSタグとマッチングすることにより、GPS位置決めの重要な補助的手法として機能する。
パターンを整列させるエレガントな配向に基づく手法を提案し、整列部分特徴を抽出する新しい分岐を導入する。
論文 参考訳(メタデータ) (2020-06-23T15:44:02Z) - Scope Head for Accurate Localization in Object Detection [135.9979405835606]
本研究では,各位置のアンカーを相互依存関係としてモデル化したScopeNetと呼ばれる新しい検出器を提案する。
我々の簡潔で効果的な設計により、提案したScopeNetはCOCOの最先端の成果を達成する。
論文 参考訳(メタデータ) (2020-05-11T04:00:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。