論文の概要: Let your LLM generate a few tokens and you will reduce the need for retrieval
- arxiv url: http://arxiv.org/abs/2412.11536v1
- Date: Mon, 16 Dec 2024 08:13:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:58:37.902251
- Title: Let your LLM generate a few tokens and you will reduce the need for retrieval
- Title(参考訳): LLMにいくつかのトークンを生成して,検索の必要性を低減させる
- Authors: Hervé Déjean,
- Abstract要約: 大規模言語モデル(LLM)は、パラメトリックメモリに解答がすでに格納されているかどうかをトレーニングすることができる。
IK(I Know)スコアを計算するためにLLM-as-a-judgeを蒸留する。
- 参考スコア(独自算出の注目度): 1.0878040851638
- License:
- Abstract: In this paper, we investigate how efficiently large language models (LLM) can be trained to check whether an answer is already stored in their parametric memory. We distill an LLM-as-a-judge to compute the IK (I Know) score. We found that this method is particularly beneficial in the context of retrieval-assisted augmented generation (RAG), with a respectable accuracy of 80%. It enables a significant reduction (more than 50%) in the number of search and reranking steps required for certain data sets. We have also introduced the IK score, which serves as a useful tool for characterising datasets by facilitating the classification task. Interestingly, through the inclusion of response tokens as input, our results suggest that only about 20,000 training samples are required to achieve good performance. The central element of this work is the use of a teacher model - the LLM as a judge - to generate training data. We also assess the robustness of the IK classifier by evaluating it with various types of teachers, including both string-based methods and LLMs, with the latter providing better results.
- Abstract(参考訳): 本稿では,そのパラメトリックメモリに解答がすでに格納されているかどうかを確認するために,大規模言語モデル(LLM)をいかに効率的に訓練できるかを検討する。
IK(I Know)スコアを計算するためにLLM-as-a-judgeを蒸留する。
この手法は検索支援拡張現実(RAG)の文脈において特に有用であり,精度は80%であった。
これにより、特定のデータセットに必要な探索と再ランクのステップの数を大幅に削減できる(50%以上)。
IKスコアも導入し,分類作業の容易化によるデータセットのキャラクタリゼーションに有用なツールとして機能する。
興味深いことに,反応トークンを入力として含めることで,性能向上には約2万のトレーニングサンプルが必要であることが示唆された。
この研究の中心的な要素は、トレーニングデータを生成するために教師モデル(LLMを裁判官として使用する)を使用することである。
IK分類器のロバスト性も,文字列ベースの手法とLLMの両方を含む様々なタイプの教師で評価することで評価し,後者の方がより良い結果が得られることを示した。
関連論文リスト
- Does Unlearning Truly Unlearn? A Black Box Evaluation of LLM Unlearning Methods [1.9799527196428242]
大規模言語モデルアンラーニングは、LLMが悪意ある目的のために使用するのを防ぐために学んだ有害な情報を除去することを目的としている。
LMUとRMUは、LLMアンラーニングの2つの方法として提案され、アンラーニングベンチマークで印象的な結果を得た。
論文 参考訳(メタデータ) (2024-11-18T22:31:17Z) - Self-Calibrated Listwise Reranking with Large Language Models [137.6557607279876]
大規模言語モデル (LLM) はシーケンシャル・ツー・シーケンス・アプローチによってタスクのランク付けに使用されている。
この階調のパラダイムは、より大きな候補集合を反復的に扱うためにスライディングウインドウ戦略を必要とする。
そこで本稿では,LLMを用いた自己校正リストのランク付け手法を提案する。
論文 参考訳(メタデータ) (2024-11-07T10:31:31Z) - Large Language Model-guided Document Selection [23.673690115025913]
大規模言語モデル(LLM)の事前学習は、ますます増加する計算予算を消費する。
近年の研究では、ドキュメントの選択がFLOPのごく一部で同等のモデル品質を実現することが実証されている。
拡張性のある汎用ドメイン文書選択のための有望な方向を探究する。
論文 参考訳(メタデータ) (2024-06-07T04:52:46Z) - PromptReps: Prompting Large Language Models to Generate Dense and Sparse Representations for Zero-Shot Document Retrieval [76.50690734636477]
本稿では,PmptRepsを提案する。このPmptRepsは,トレーニングを必要とせず,コーパス全体から検索できる機能である。
検索システムは、高密度テキスト埋め込みとスパースバッグ・オブ・ワード表現の両方を利用する。
論文 参考訳(メタデータ) (2024-04-29T04:51:30Z) - Enhancing Low-Resource LLMs Classification with PEFT and Synthetic Data [36.09359953556684]
大規模言語モデル(LLMs)は、テキスト分類タスクにおいて、0ショットまたは数ショットの設定で動作する。
In-Context Learning (ICL) は通常、0ショット設定よりも精度が高いが、入力のプロンプトが長くなるため、効率性は高い。
論文 参考訳(メタデータ) (2024-04-03T03:24:19Z) - How to Train Data-Efficient LLMs [56.41105687693619]
事前学習言語モデル(LLM)に対するデータ効率のアプローチについて検討する。
Ask-LLMと密度サンプリングがそれぞれのカテゴリで最適であることがわかった。
何百もの評価タスクと事前学習作業を含む19個のサンプルを比較したところ,Ask-LLMと密度がそれぞれのカテゴリで最適な方法であることが判明した。
論文 参考訳(メタデータ) (2024-02-15T02:27:57Z) - Contextual Biasing of Named-Entities with Large Language Models [12.396054621526643]
本稿では,Large Language Models (LLM) を用いた文脈バイアスについて検討する。
LLMに追加のコンテキスト情報を提供して、自動音声認識(ASR)性能を向上する。
本稿では, バイアスリストと少数ショット例を組み込んだ再描画時に, 微調整を行なわずに, LLMのプロンプトを活用することを提案する。
論文 参考訳(メタデータ) (2023-09-01T20:15:48Z) - From Quantity to Quality: Boosting LLM Performance with Self-Guided Data Selection for Instruction Tuning [52.257422715393574]
本稿では,Large Language Models (LLMs) の自己誘導手法を導入し,オープンソースデータセットからサクラサンプルを自動識別し,選択する。
我々の重要な革新である命令追従困難度(IFD)メトリックは、モデルが期待する応答と本質的な生成能力の相違を識別するための重要な指標として現れます。
論文 参考訳(メタデータ) (2023-08-23T09:45:29Z) - Language models are weak learners [71.33837923104808]
本研究では,プロンプトベースの大規模言語モデルは弱い学習者として効果的に動作可能であることを示す。
これらのモデルをブースティングアプローチに組み込むことで、モデル内の知識を活用して、従来のツリーベースのブースティングよりも優れています。
結果は、プロンプトベースのLLMが、少数の学習者だけでなく、より大きな機械学習パイプラインのコンポーネントとして機能する可能性を示している。
論文 参考訳(メタデータ) (2023-06-25T02:39:19Z) - Zero-Shot Listwise Document Reranking with a Large Language Model [58.64141622176841]
本稿では,タスク固有の学習データを用いることなく,言語モデル(LRL)を用いたリスワイズ・リランカを提案する。
3つのTRECウェブサーチデータセットの実験により、LRLは第1段検索結果の再ランク付け時にゼロショットポイントワイズ法より優れるだけでなく、最終段再ランカとしても機能することが示された。
論文 参考訳(メタデータ) (2023-05-03T14:45:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。