Let your LLM generate a few tokens and you will reduce the need for retrieval
- URL: http://arxiv.org/abs/2412.11536v1
- Date: Mon, 16 Dec 2024 08:13:14 GMT
- Title: Let your LLM generate a few tokens and you will reduce the need for retrieval
- Authors: Hervé Déjean,
- Abstract summary: Large language models (LLM) can be trained to check whether an answer is already stored in their parametric memory.
We distill an LLM-as-a-judge to compute the IK (I Know) score.
- Score: 1.0878040851638
- License:
- Abstract: In this paper, we investigate how efficiently large language models (LLM) can be trained to check whether an answer is already stored in their parametric memory. We distill an LLM-as-a-judge to compute the IK (I Know) score. We found that this method is particularly beneficial in the context of retrieval-assisted augmented generation (RAG), with a respectable accuracy of 80%. It enables a significant reduction (more than 50%) in the number of search and reranking steps required for certain data sets. We have also introduced the IK score, which serves as a useful tool for characterising datasets by facilitating the classification task. Interestingly, through the inclusion of response tokens as input, our results suggest that only about 20,000 training samples are required to achieve good performance. The central element of this work is the use of a teacher model - the LLM as a judge - to generate training data. We also assess the robustness of the IK classifier by evaluating it with various types of teachers, including both string-based methods and LLMs, with the latter providing better results.
Related papers
- Does Unlearning Truly Unlearn? A Black Box Evaluation of LLM Unlearning Methods [1.9799527196428242]
Large language model unlearning aims to remove harmful information that LLMs have learnt to prevent their use for malicious purposes.
LMU and RMU have been proposed as two methods for LLM unlearning, achieving impressive results on unlearning benchmarks.
arXiv Detail & Related papers (2024-11-18T22:31:17Z) - Self-Calibrated Listwise Reranking with Large Language Models [137.6557607279876]
Large language models (LLMs) have been employed in reranking tasks through a sequence-to-sequence approach.
This reranking paradigm requires a sliding window strategy to iteratively handle larger candidate sets.
We propose a novel self-calibrated listwise reranking method, which aims to leverage LLMs to produce global relevance scores for ranking.
arXiv Detail & Related papers (2024-11-07T10:31:31Z) - Large Language Model-guided Document Selection [23.673690115025913]
Large Language Model (LLM) pre-training exhausts an ever growing compute budget.
Recent research has demonstrated that careful document selection enables comparable model quality with only a fraction of the FLOPs.
We explore a promising direction for scalable general-domain document selection.
arXiv Detail & Related papers (2024-06-07T04:52:46Z) - PromptReps: Prompting Large Language Models to Generate Dense and Sparse Representations for Zero-Shot Document Retrieval [76.50690734636477]
We propose PromptReps, which combines the advantages of both categories: no need for training and the ability to retrieve from the whole corpus.
The retrieval system harnesses both dense text embedding and sparse bag-of-words representations.
arXiv Detail & Related papers (2024-04-29T04:51:30Z) - Enhancing Low-Resource LLMs Classification with PEFT and Synthetic Data [36.09359953556684]
Large Language Models (LLMs) operating in 0-shot or few-shot settings achieve competitive results in Text Classification tasks.
In-Context Learning (ICL) typically achieves better accuracy than the 0-shot setting, but it pays in terms of efficiency, due to the longer input prompt.
arXiv Detail & Related papers (2024-04-03T03:24:19Z) - How to Train Data-Efficient LLMs [56.41105687693619]
We study data-efficient approaches for pre-training language models (LLMs)
We find that Ask-LLM and Density sampling are the best methods in their respective categories.
In our comparison of 19 samplers, involving hundreds of evaluation tasks and pre-training runs, we find that Ask-LLM and Density are the best methods in their respective categories.
arXiv Detail & Related papers (2024-02-15T02:27:57Z) - Contextual Biasing of Named-Entities with Large Language Models [12.396054621526643]
This paper studies contextual biasing with Large Language Models (LLMs)
During second-pass rescoring additional contextual information is provided to a LLM to boost Automatic Speech Recognition (ASR) performance.
We propose to leverage prompts for a LLM without fine tuning during rescoring which incorporate a biasing list and few-shot examples.
arXiv Detail & Related papers (2023-09-01T20:15:48Z) - From Quantity to Quality: Boosting LLM Performance with Self-Guided Data Selection for Instruction Tuning [52.257422715393574]
We introduce a self-guided methodology for Large Language Models (LLMs) to autonomously discern and select cherry samples from open-source datasets.
Our key innovation, the Instruction-Following Difficulty (IFD) metric, emerges as a pivotal metric to identify discrepancies between a model's expected responses and its intrinsic generation capability.
arXiv Detail & Related papers (2023-08-23T09:45:29Z) - Language models are weak learners [71.33837923104808]
We show that prompt-based large language models can operate effectively as weak learners.
We incorporate these models into a boosting approach, which can leverage the knowledge within the model to outperform traditional tree-based boosting.
Results illustrate the potential for prompt-based LLMs to function not just as few-shot learners themselves, but as components of larger machine learning pipelines.
arXiv Detail & Related papers (2023-06-25T02:39:19Z) - Zero-Shot Listwise Document Reranking with a Large Language Model [58.64141622176841]
We propose Listwise Reranker with a Large Language Model (LRL), which achieves strong reranking effectiveness without using any task-specific training data.
Experiments on three TREC web search datasets demonstrate that LRL not only outperforms zero-shot pointwise methods when reranking first-stage retrieval results, but can also act as a final-stage reranker.
arXiv Detail & Related papers (2023-05-03T14:45:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.