論文の概要: Seeker: Towards Exception Safety Code Generation with Intermediate Language Agents Framework
- arxiv url: http://arxiv.org/abs/2412.11713v1
- Date: Mon, 16 Dec 2024 12:35:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 14:02:43.372774
- Title: Seeker: Towards Exception Safety Code Generation with Intermediate Language Agents Framework
- Title(参考訳): Seeker: 中間言語エージェントフレームワークによる例外安全コード生成
- Authors: Xuanming Zhang, Yuxuan Chen, Yiming Zheng, Zhexin Zhang, Yuan Yuan, Minlie Huang,
- Abstract要約: 現実世界のソフトウェア開発では、不適切な例外処理がコードの堅牢性と信頼性に重大な影響を与えます。
コードにおける例外処理を改善するために,大規模言語モデル (LLM) の利用について検討する。
例外処理のエキスパート開発者戦略に触発されたマルチエージェントフレームワークであるSeekerを提案する。
- 参考スコア(独自算出の注目度): 58.36391985790157
- License:
- Abstract: In real world software development, improper or missing exception handling can severely impact the robustness and reliability of code. Exception handling mechanisms require developers to detect, capture, and manage exceptions according to high standards, but many developers struggle with these tasks, leading to fragile code. This problem is particularly evident in open-source projects and impacts the overall quality of the software ecosystem. To address this challenge, we explore the use of large language models (LLMs) to improve exception handling in code. Through extensive analysis, we identify three key issues: Insensitive Detection of Fragile Code, Inaccurate Capture of Exception Block, and Distorted Handling Solution. These problems are widespread across real world repositories, suggesting that robust exception handling practices are often overlooked or mishandled. In response, we propose Seeker, a multi-agent framework inspired by expert developer strategies for exception handling. Seeker uses agents: Scanner, Detector, Predator, Ranker, and Handler to assist LLMs in detecting, capturing, and resolving exceptions more effectively. Our work is the first systematic study on leveraging LLMs to enhance exception handling practices in real development scenarios, providing valuable insights for future improvements in code reliability.
- Abstract(参考訳): 現実世界のソフトウェア開発では、不適切な例外処理がコードの堅牢性と信頼性に重大な影響を与えます。
例外処理メカニズムでは、開発者は高い標準に従って例外を検出し、キャプチャし、管理する必要があるが、多くの開発者はこれらのタスクに苦労し、脆弱なコードを生み出している。
この問題はオープンソースプロジェクトでは特に顕著で、ソフトウェアエコシステム全体の品質に影響を与えます。
この課題に対処するために、コードの例外処理を改善するために、大規模言語モデル(LLM)の使用について検討する。
広範に分析した結果,Fragile コードの非知覚検出,例外ブロックの不正確なキャプチャ,歪んだハンドリングソリューションの3つの問題が明らかになった。
これらの問題は現実世界のリポジトリに広まっており、堅牢な例外処理のプラクティスは見過ごされ、誤った扱いをされることがしばしばあることを示唆している。
そこで我々は,例外処理のエキスパート開発戦略に触発されたマルチエージェントフレームワークであるSeekerを提案する。
Seeker は Scanner, Detector, Predator, Ranker, Handler というエージェントを使用して,例外の検出,キャプチャ,解決をより効果的に行う。
私たちの研究は、LLMを活用して、実際の開発シナリオにおける例外処理プラクティスを強化する最初の体系的な研究であり、将来のコード信頼性向上のための貴重な洞察を提供する。
関連論文リスト
- LLMs as Continuous Learners: Improving the Reproduction of Defective Code in Software Issues [62.12404317786005]
EvoCoderは、イシューコード再現のための継続的学習フレームワークである。
その結果,既存のSOTA法よりも20%改善した。
論文 参考訳(メタデータ) (2024-11-21T08:49:23Z) - REDO: Execution-Free Runtime Error Detection for COding Agents [3.9903610503301072]
Execution-free Error Detection for Coding Agents (REDO)は、実行時のエラーと静的解析ツールを統合する方法である。
我々はREDOが11.0%の精度と9.1%の重み付きF1スコアを達成し、最先端の手法よりも優れていることを示した。
論文 参考訳(メタデータ) (2024-10-10T18:06:29Z) - Seeker: Enhancing Exception Handling in Code with LLM-based Multi-Agent Approach [54.03528377384397]
現実世界のソフトウェア開発では、不適切な例外処理がコードの堅牢性と信頼性に重大な影響を与えます。
コードにおける例外処理を改善するために,大規模言語モデル (LLM) の利用について検討する。
例外処理のエキスパート開発者戦略にインスパイアされたマルチエージェントフレームワークであるSeekerを提案する。
論文 参考訳(メタデータ) (2024-10-09T14:45:45Z) - Compromising Embodied Agents with Contextual Backdoor Attacks [69.71630408822767]
大型言語モデル(LLM)は、エンボディドインテリジェンスの発展に変化をもたらした。
本稿では,このプロセスにおけるバックドアセキュリティの重大な脅威を明らかにする。
ほんの少しの文脈的デモンストレーションを毒殺しただけで、攻撃者はブラックボックスLDMの文脈的環境を隠蔽することができる。
論文 参考訳(メタデータ) (2024-08-06T01:20:12Z) - Caution for the Environment: Multimodal Agents are Susceptible to Environmental Distractions [68.92637077909693]
本稿では,グラフィカルユーザインタフェース(GUI)環境におけるマルチモーダル大規模言語モデル(MLLM)エージェントの忠実さについて検討する。
ユーザとエージェントの両方が良性であり、環境は悪質ではないが、無関係なコンテンツを含む、一般的な設定が提案されている。
実験結果から、ジェネラリストエージェントや専門的なGUIエージェントなど、最も強力なモデルでさえ、気晴らしの影響を受けやすいことが明らかとなった。
論文 参考訳(メタデータ) (2024-08-05T15:16:22Z) - Agent-Driven Automatic Software Improvement [55.2480439325792]
本提案は,Large Language Models (LLMs) を利用したエージェントの展開に着目して,革新的なソリューションの探求を目的とする。
継続的学習と適応を可能にするエージェントの反復的性質は、コード生成における一般的な課題を克服するのに役立ちます。
我々は,これらのシステムにおける反復的なフィードバックを用いて,エージェントの基盤となるLLMをさらに微調整し,自動化されたソフトウェア改善のタスクに整合性を持たせることを目指している。
論文 参考訳(メタデータ) (2024-06-24T15:45:22Z) - Harnessing Large Language Models for Software Vulnerability Detection: A Comprehensive Benchmarking Study [1.03590082373586]
ソースコードの脆弱性発見を支援するために,大規模言語モデル(LLM)を提案する。
目的は、複数の最先端のLCMをテストし、最も優れたプロンプト戦略を特定することである。
LLMは従来の静的解析ツールよりも多くの問題を特定でき、リコールやF1スコアの点で従来のツールよりも優れています。
論文 参考訳(メタデータ) (2024-05-24T14:59:19Z) - A Comprehensive Study of the Capabilities of Large Language Models for Vulnerability Detection [9.422811525274675]
大規模言語モデル(LLM)は、コード生成やその他のソフトウェアエンジニアリングタスクに大きな可能性を実証しています。
脆弱性検出は、ソフトウェアシステムのセキュリティ、完全性、信頼性を維持する上で非常に重要である。
最近の研究は、ジェネリックプロンプト技術を用いた脆弱性検出にLLMを適用しているが、このタスクの能力とそれらが犯すエラーの種類は未だ不明である。
論文 参考訳(メタデータ) (2024-03-25T21:47:36Z) - From Misuse to Mastery: Enhancing Code Generation with Knowledge-Driven
AI Chaining [16.749379740049925]
大きな言語モデル(LLM)は、コーディング効率をある程度改善することで、自動コード生成の有望な結果を示している。
しかし、LLMが優れたプログラミングプラクティスを欠いているため、高品質で信頼性の高いコードを生成することは、依然として恐ろしい作業である。
我々は、コード生成を反復的なチェック-リライトステップでAIチェーンに分解する、知識駆動型Prompt Chainingベースのコード生成手法を提案する。
論文 参考訳(メタデータ) (2023-09-27T12:09:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。