論文の概要: AMI-Net: Adaptive Mask Inpainting Network for Industrial Anomaly Detection and Localization
- arxiv url: http://arxiv.org/abs/2412.11802v1
- Date: Mon, 16 Dec 2024 14:12:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 14:00:44.391148
- Title: AMI-Net: Adaptive Mask Inpainting Network for Industrial Anomaly Detection and Localization
- Title(参考訳): AMI-Net:産業異常検出・局所化のための適応マスク塗装ネットワーク
- Authors: Wei Luo, Haiming Yao, Wenyong Yu, Zhengyong Li,
- Abstract要約: 適応マスク塗装の観点から, ulineAdaptive ulineMask ulineInpainting ulineNetwork (AMI-Net)を提案する。
非意味的画像画素を対象とする従来の再構成手法とは対照的に,本手法では事前学習ネットワークを用いて,再構成対象として多スケールの意味的特徴を抽出する。
- 参考スコア(独自算出の注目度): 3.554808835163475
- License:
- Abstract: Unsupervised visual anomaly detection is crucial for enhancing industrial production quality and efficiency. Among unsupervised methods, reconstruction approaches are popular due to their simplicity and effectiveness. The key aspect of reconstruction methods lies in the restoration of anomalous regions, which current methods have not satisfactorily achieved. To tackle this issue, we introduce a novel \uline{A}daptive \uline{M}ask \uline{I}npainting \uline{Net}work (AMI-Net) from the perspective of adaptive mask-inpainting. In contrast to traditional reconstruction methods that treat non-semantic image pixels as targets, our method uses a pre-trained network to extract multi-scale semantic features as reconstruction targets. Given the multiscale nature of industrial defects, we incorporate a training strategy involving random positional and quantitative masking. Moreover, we propose an innovative adaptive mask generator capable of generating adaptive masks that effectively mask anomalous regions while preserving normal regions. In this manner, the model can leverage the visible normal global contextual information to restore the masked anomalous regions, thereby effectively suppressing the reconstruction of defects. Extensive experimental results on the MVTec AD and BTAD industrial datasets validate the effectiveness of the proposed method. Additionally, AMI-Net exhibits exceptional real-time performance, striking a favorable balance between detection accuracy and speed, rendering it highly suitable for industrial applications. Code is available at: https://github.com/luow23/AMI-Net
- Abstract(参考訳): 産業生産の質と効率を高めるためには、教師なしの視覚異常検出が不可欠である。
教師なしの手法の中で、その単純さと有効性から再構築アプローチが人気である。
再建法の重要な側面は、現在の方法が十分に達成されていない異常領域の復元にある。
この問題に対処するために、適応マスク塗装の観点から、新規な \uline{A}daptive \uline{M}ask \uline{I}npainting \uline{Net}work (AMI-Net) を導入する。
非意味的画像画素を対象とする従来の再構成手法とは対照的に,本手法では事前学習ネットワークを用いて,再構成対象として多スケールの意味的特徴を抽出する。
産業欠陥のマルチスケール性を考えると、ランダムな位置と定量的マスキングを含むトレーニング戦略を取り入れる。
さらに,正常な領域を保存しながら,異常領域を効果的にマスクする適応マスクを生成可能な,革新的な適応マスク生成器を提案する。
このようにして、このモデルは、目に見える通常のグローバルな文脈情報を利用して、マスクされた異常領域を復元し、欠陥の復元を効果的に抑制することができる。
MVTec ADおよびBTAD産業データセットの大規模な実験結果により,提案手法の有効性が検証された。
さらに、AMI-Netは例外的なリアルタイム性能を示し、検出精度と速度のバランスを保ち、産業アプリケーションに非常に適している。
コードは、https://github.com/luow23/AMI-Netで入手できる。
関連論文リスト
- LADMIM: Logical Anomaly Detection with Masked Image Modeling in Discrete Latent Space [0.0]
マスク付き画像モデリングは、画像中のマスキング領域の特徴表現を予測する自己教師付き学習技術である。
本稿では,MIMの特性を利用して論理異常を効果的に検出する手法を提案する。
提案手法をMVTecLOCOデータセット上で評価し,平均AUC 0.867。
論文 参考訳(メタデータ) (2024-10-14T07:50:56Z) - Feature Attenuation of Defective Representation Can Resolve Incomplete Masking on Anomaly Detection [1.0358639819750703]
教師なし異常検出(UAD)研究では、計算効率が高くスケーラブルなソリューションを開発する必要がある。
再建・塗り替えのアプローチを再考し、強みと弱みを分析して改善する。
異常再構成の特徴情報を減衰させる2つの層のみを用いるFADeR(Feature Attenuation of Defective Representation)を提案する。
論文 参考訳(メタデータ) (2024-07-05T15:44:53Z) - Continual-MAE: Adaptive Distribution Masked Autoencoders for Continual Test-Time Adaptation [49.827306773992376]
連続的テスト時間適応(CTTA)は、ソース事前学習モデルから目標分布の連続的な変化に移行するために提案される。
提案手法は,CTTAタスクの分類とセグメンテーションの両方において,最先端の性能を実現する。
論文 参考訳(メタデータ) (2023-12-19T15:34:52Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
本稿では,拡散型異常検出(Difusion-based Anomaly Detection, DAD)フレームワークを提案する。
画素空間オートエンコーダ、安定拡散の復調ネットワークに接続する潜在空間セマンティックガイド(SG)ネットワーク、特徴空間事前学習機能抽出器から構成される。
MVTec-ADとVisAデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-12-11T18:38:28Z) - Excision And Recovery: Visual Defect Obfuscation Based Self-Supervised
Anomaly Detection Strategy [1.0358639819750703]
エキシジョン・アンド・リカバリ(EAR)と呼ばれる新しいリコンストラクション・バイ・インペインティング手法を提案する。
EARは、ImageNetで事前訓練されたDINO-ViTとヒント提供のための視覚的難読化に基づいて、単一の決定論的マスキングを特徴としている。
提案手法は,ニューラルネットワーク構造の変化を伴わずに,高い異常検出性能を実現する。
論文 参考訳(メタデータ) (2023-10-06T04:40:48Z) - Masking Improves Contrastive Self-Supervised Learning for ConvNets, and Saliency Tells You Where [63.61248884015162]
我々は、畳み込みニューラルネットワークのためのコントラスト学習フレームワークにマスキング操作を組み込むことの負担を軽減することを目的としている。
マスクされた領域が、前景と背景の間に均等に分散されていることを考慮し、塩分濃度の制約を明示的に考慮することを提案する。
論文 参考訳(メタデータ) (2023-09-22T09:58:38Z) - Boosting Adversarial Transferability with Learnable Patch-wise Masks [16.46210182214551]
敵の例は、異なるモデル間での転送可能性のため、セキュリティクリティカルなアプリケーションで広く注目を集めている。
本稿では、モデル固有の識別領域が、ソースモデルに過度に適合し、ターゲットモデルへの転送可能性を低減する重要な要因であると論じる。
これらの領域を正確にローカライズするために,マスクの自動最適化のための学習可能なアプローチを提案する。
論文 参考訳(メタデータ) (2023-06-28T05:32:22Z) - DiffusionAD: Norm-guided One-step Denoising Diffusion for Anomaly
Detection [89.49600182243306]
我々は拡散モデルを用いて再構成過程をノイズ・ツー・ノームパラダイムに再構成する。
本稿では,拡散モデルにおける従来の反復的復調よりもはるかに高速な高速な一段階復調パラダイムを提案する。
セグメント化サブネットワークは、入力画像とその異常のない復元を用いて画素レベルの異常スコアを予測する。
論文 参考訳(メタデータ) (2023-03-15T16:14:06Z) - MixMask: Revisiting Masking Strategy for Siamese ConvNets [23.946791390657875]
この研究は、textbfMixMaskと呼ばれる新しいフィリングベースのマスキング手法を導入している。
提案手法は,消去された領域を別の画像からのコンテンツに置き換えることにより,従来のマスキング手法で見られる情報の枯渇を効果的に解消する。
我々は,線形探索,半教師付きおよび教師付きファインタニング,オブジェクト検出,セグメンテーションなどの領域におけるフレームワークの性能向上を実証的に検証した。
論文 参考訳(メタデータ) (2022-10-20T17:54:03Z) - Self-Supervised Masked Convolutional Transformer Block for Anomaly
Detection [122.4894940892536]
本稿では, 自己監督型マスク型畳み込み変圧器ブロック (SSMCTB) について述べる。
本研究では,従来の自己教師型予測畳み込み抑止ブロック(SSPCAB)を3次元マスク付き畳み込み層,チャンネルワイドアテンション用トランスフォーマー,およびハマーロスに基づく新たな自己教師型目標を用いて拡張する。
論文 参考訳(メタデータ) (2022-09-25T04:56:10Z) - LevelSet R-CNN: A Deep Variational Method for Instance Segmentation [79.20048372891935]
現在、多くのアートモデルはMask R-CNNフレームワークに基づいている。
本稿では,両世界の長所を結合したR-CNNを提案する。
我々はCOCOおよびCityscapesデータセットに対するアプローチの有効性を示す。
論文 参考訳(メタデータ) (2020-07-30T17:52:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。