AMI-Net: Adaptive Mask Inpainting Network for Industrial Anomaly Detection and Localization
- URL: http://arxiv.org/abs/2412.11802v1
- Date: Mon, 16 Dec 2024 14:12:06 GMT
- Title: AMI-Net: Adaptive Mask Inpainting Network for Industrial Anomaly Detection and Localization
- Authors: Wei Luo, Haiming Yao, Wenyong Yu, Zhengyong Li,
- Abstract summary: We introduce a novel ulineAdaptive ulineMask ulineInpainting ulineNetwork (AMI-Net) from the perspective of adaptive mask-inpainting.
In contrast to traditional reconstruction methods that treat non-semantic image pixels as targets, our method uses a pre-trained network to extract multi-scale semantic features as reconstruction targets.
- Score: 3.554808835163475
- License:
- Abstract: Unsupervised visual anomaly detection is crucial for enhancing industrial production quality and efficiency. Among unsupervised methods, reconstruction approaches are popular due to their simplicity and effectiveness. The key aspect of reconstruction methods lies in the restoration of anomalous regions, which current methods have not satisfactorily achieved. To tackle this issue, we introduce a novel \uline{A}daptive \uline{M}ask \uline{I}npainting \uline{Net}work (AMI-Net) from the perspective of adaptive mask-inpainting. In contrast to traditional reconstruction methods that treat non-semantic image pixels as targets, our method uses a pre-trained network to extract multi-scale semantic features as reconstruction targets. Given the multiscale nature of industrial defects, we incorporate a training strategy involving random positional and quantitative masking. Moreover, we propose an innovative adaptive mask generator capable of generating adaptive masks that effectively mask anomalous regions while preserving normal regions. In this manner, the model can leverage the visible normal global contextual information to restore the masked anomalous regions, thereby effectively suppressing the reconstruction of defects. Extensive experimental results on the MVTec AD and BTAD industrial datasets validate the effectiveness of the proposed method. Additionally, AMI-Net exhibits exceptional real-time performance, striking a favorable balance between detection accuracy and speed, rendering it highly suitable for industrial applications. Code is available at: https://github.com/luow23/AMI-Net
Related papers
- Mask Factory: Towards High-quality Synthetic Data Generation for Dichotomous Image Segmentation [70.95380821618711]
Dichotomous Image (DIS) tasks require highly precise annotations.
Current generative models and techniques struggle with the issues of scene deviations, noise-induced errors, and limited training sample variability.
We introduce a novel approach, which provides a scalable solution for generating diverse and precise datasets.
arXiv Detail & Related papers (2024-12-26T06:37:25Z) - LADMIM: Logical Anomaly Detection with Masked Image Modeling in Discrete Latent Space [0.0]
Masked image modeling is a self-supervised learning technique that predicts the feature representation of masked regions in an image.
We propose a novel approach that leverages the characteristics of MIM to detect logical anomalies effectively.
We evaluate the proposed method on the MVTecLOCO dataset, achieving an average AUC of 0.867.
arXiv Detail & Related papers (2024-10-14T07:50:56Z) - Feature Attenuation of Defective Representation Can Resolve Incomplete Masking on Anomaly Detection [1.0358639819750703]
In unsupervised anomaly detection (UAD) research, it is necessary to develop a computationally efficient and scalable solution.
We revisit the reconstruction-by-inpainting approach and rethink to improve it by analyzing strengths and weaknesses.
We propose Feature Attenuation of Defective Representation (FADeR) that only employs two layers which attenuates feature information of anomaly reconstruction.
arXiv Detail & Related papers (2024-07-05T15:44:53Z) - Continual-MAE: Adaptive Distribution Masked Autoencoders for Continual Test-Time Adaptation [49.827306773992376]
Continual Test-Time Adaptation (CTTA) is proposed to migrate a source pre-trained model to continually changing target distributions.
Our proposed method attains state-of-the-art performance in both classification and segmentation CTTA tasks.
arXiv Detail & Related papers (2023-12-19T15:34:52Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Excision And Recovery: Visual Defect Obfuscation Based Self-Supervised
Anomaly Detection Strategy [1.0358639819750703]
We propose a novel reconstruction-by-inpainting method, dubbed Excision And Recovery (EAR)
EAR features single deterministic masking based on the ImageNet pre-trained DINO-ViT and visual obfuscation for hint-providing.
Our approach achieves a high anomaly detection performance without any change of the neural network structure.
arXiv Detail & Related papers (2023-10-06T04:40:48Z) - Masking Improves Contrastive Self-Supervised Learning for ConvNets, and Saliency Tells You Where [63.61248884015162]
We aim to alleviate the burden of including masking operation into the contrastive-learning framework for convolutional neural networks.
We propose to explicitly take the saliency constraint into consideration in which the masked regions are more evenly distributed among the foreground and background.
arXiv Detail & Related papers (2023-09-22T09:58:38Z) - Boosting Adversarial Transferability with Learnable Patch-wise Masks [16.46210182214551]
Adversarial examples have attracted widespread attention in security-critical applications because of their transferability across different models.
In this paper, we argue that the model-specific discriminative regions are a key factor causing overfitting to the source model, and thus reducing the transferability to the target model.
To accurately localize these regions, we present a learnable approach to automatically optimize the mask.
arXiv Detail & Related papers (2023-06-28T05:32:22Z) - DiffusionAD: Norm-guided One-step Denoising Diffusion for Anomaly
Detection [89.49600182243306]
We reformulate the reconstruction process using a diffusion model into a noise-to-norm paradigm.
We propose a rapid one-step denoising paradigm, significantly faster than the traditional iterative denoising in diffusion models.
The segmentation sub-network predicts pixel-level anomaly scores using the input image and its anomaly-free restoration.
arXiv Detail & Related papers (2023-03-15T16:14:06Z) - MixMask: Revisiting Masking Strategy for Siamese ConvNets [23.946791390657875]
This work introduces a novel filling-based masking approach, termed textbfMixMask.
The proposed method replaces erased areas with content from a different image, effectively countering the information depletion seen in traditional masking methods.
We empirically validate our framework's enhanced performance in areas such as linear probing, semi-supervised and supervised finetuning, object detection and segmentation.
arXiv Detail & Related papers (2022-10-20T17:54:03Z) - LevelSet R-CNN: A Deep Variational Method for Instance Segmentation [79.20048372891935]
Currently, many state of the art models are based on the Mask R-CNN framework.
We propose LevelSet R-CNN, which combines the best of both worlds by obtaining powerful feature representations.
We demonstrate the effectiveness of our approach on COCO and Cityscapes datasets.
arXiv Detail & Related papers (2020-07-30T17:52:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.