論文の概要: Stepwise Reasoning Error Disruption Attack of LLMs
- arxiv url: http://arxiv.org/abs/2412.11934v2
- Date: Tue, 24 Dec 2024 03:55:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-25 15:52:49.199590
- Title: Stepwise Reasoning Error Disruption Attack of LLMs
- Title(参考訳): LLMのエラー破壊攻撃の段階的推論
- Authors: Jingyu Peng, Maolin Wang, Xiangyu Zhao, Kai Zhang, Wanyu Wang, Pengyue Jia, Qidong Liu, Ruocheng Guo, Qi Liu,
- Abstract要約: 既存の大規模言語モデル(LLM)に対する攻撃は、特定の設定や非受容性の欠如によって制限される。
本稿では,事前の推論ステップに誤りを微妙に注入し,そのモデルに誤りを生じさせるステップワイズ rEasoning Error Disruption (SEED) 攻撃を提案する。
- 参考スコア(独自算出の注目度): 34.30455975290165
- License:
- Abstract: Large language models (LLMs) have made remarkable strides in complex reasoning tasks, but their safety and robustness in reasoning processes remain underexplored. Existing attacks on LLM reasoning are constrained by specific settings or lack of imperceptibility, limiting their feasibility and generalizability. To address these challenges, we propose the Stepwise rEasoning Error Disruption (SEED) attack, which subtly injects errors into prior reasoning steps to mislead the model into producing incorrect subsequent reasoning and final answers. Unlike previous methods, SEED is compatible with zero-shot and few-shot settings, maintains the natural reasoning flow, and ensures covert execution without modifying the instruction. Extensive experiments on four datasets across four different models demonstrate SEED's effectiveness, revealing the vulnerabilities of LLMs to disruptions in reasoning processes. These findings underscore the need for greater attention to the robustness of LLM reasoning to ensure safety in practical applications.
- Abstract(参考訳): 大規模言語モデル(LLM)は複雑な推論タスクにおいて顕著な進歩を遂げてきたが、推論プロセスにおける安全性と堅牢性はいまだ探索されていない。
LLM推論に対する既存の攻撃は、具体的設定や不可避性の欠如によって制限され、その実現可能性と一般化性は制限される。
これらの課題に対処するために、ステップワイズ rEasoning Error Disruption (SEED) 攻撃を提案する。
従来の方法とは異なり、SEEDはゼロショットや少数ショットの設定と互換性があり、自然な推論フローを維持し、命令を変更することなくカバート実行を保証する。
4つの異なるモデルにまたがる4つのデータセットに対する大規模な実験は、SEEDの有効性を示し、推論プロセスにおけるLCMの破壊に対する脆弱性を明らかにしている。
これらの知見は, LLM推論の堅牢性に注意を払って, 実用化の安全性を確保することの必要性を浮き彫りにした。
関連論文リスト
- Automatic Curriculum Expert Iteration for Reliable LLM Reasoning [60.60318625779015]
幻覚(すなわち、可塑性だが不正確な内容を生成する)と怠慢(すなわち過剰な拒絶や「私は知らない」のデフォルト)は、LLM推論における主要な課題として残る。
幻覚を減らそうとする現在の取り組みは、主に知識に基づくタスクにおける事実的誤りに焦点を当てており、しばしば欠陥推論に関連する幻覚を無視している。
本稿では,LLM推論を強化し,モデルの能力に応答する自動カリキュラムエキスパートイテレーション(Auto-CEI)を提案する。
論文 参考訳(メタデータ) (2024-10-10T05:43:07Z) - Counterfactual Explainable Incremental Prompt Attack Analysis on Large Language Models [32.03992137755351]
本研究は,大規模言語モデル(LLM)における安全性とプライバシ対策の推進的必要性に光を当てるものである。
本稿では,攻撃効果を定量的に測定するために,特定の方法でプロンプトを誘導する新しい手法であるCEIPAを提案する。
論文 参考訳(メタデータ) (2024-07-12T14:26:14Z) - Evaluating Uncertainty-based Failure Detection for Closed-Loop LLM Planners [10.746821861109176]
大型言語モデル(LLM)は、ロボットタスクのためのゼロショットタスクプランナーとして、目覚ましいパフォーマンスをみせている。
しかし、以前の研究のオープンループの性質は、LSMベースの計画がエラーを起こしやすく、脆弱である。
本研究では,不確実性に基づくMLLM故障検出装置をベースとした,閉ループLLMに基づくKnowLoop計画のためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-01T12:52:06Z) - Assessing Adversarial Robustness of Large Language Models: An Empirical Study [24.271839264950387]
大規模言語モデル(LLM)は自然言語処理に革命をもたらしたが、敵の攻撃に対する頑強さは依然として重要な問題である。
Llama, OPT, T5 など,主要なオープンソース LLM の脆弱性を露呈する,新しいホワイトボックス型攻撃手法を提案する。
論文 参考訳(メタデータ) (2024-05-04T22:00:28Z) - Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning [61.2224355547598]
大規模言語モデル(LLM)のオープンソース化は、アプリケーション開発、イノベーション、科学的進歩を加速させる。
我々の調査は、この信念に対する重大な監視を露呈している。
我々の研究は、慎重に設計されたデモを配置することにより、ベースLSMが悪意のある命令を効果的に解釈し実行できることを実証する。
論文 参考訳(メタデータ) (2024-04-16T13:22:54Z) - Resilience of Large Language Models for Noisy Instructions [38.25524275497566]
大規模言語モデル(LLM)は、ヒューマンコマンドを解釈し、様々なタスク間でテキストを生成する強力なツールとして登場した。
本研究では, ASR(Automatic Speech Recognition)エラー, OCR(Optical Character Recognition)エラー, 文法的誤り, 気まぐれな内容を含む5種類の障害に対するLLMのレジリエンスについて検討した。
以上の結果から,一部のLCMは特定の騒音に対する耐性を示すが,全体的な性能は著しく低下することが明らかとなった。
論文 参考訳(メタデータ) (2024-04-15T12:55:08Z) - ROSE Doesn't Do That: Boosting the Safety of Instruction-Tuned Large Language Models with Reverse Prompt Contrastive Decoding [89.0074567748505]
本稿では,既存の命令調整LDMの安全性を高めるための簡易な手法であるROSE(Reverse prompt contrastive decoding)を提案する。
6つの安全性と2つの汎用タスクの実験から、ROSEは5種類の命令調整LDMに対して、一貫した、重要な安全性向上(+13.8%の安全性スコア)をもたらすだけでなく、LLMの汎用能力にも恩恵をもたらすことが示されている。
論文 参考訳(メタデータ) (2024-02-19T06:58:42Z) - A Closer Look at the Self-Verification Abilities of Large Language Models in Logical Reasoning [73.77088902676306]
論理的推論の文脈において,大規模言語モデル(LLM)の自己検証能力について詳しく検討する。
本研究の主目的は,既存のLCMが誤った推論手順を正確に識別するのに苦労し,自己検証法の有効性を保証できないことにある。
論文 参考訳(メタデータ) (2023-11-14T07:13:10Z) - Gaining Wisdom from Setbacks: Aligning Large Language Models via Mistake
Analysis [127.85293480405082]
大規模言語モデル(LLM)の急速な開発は、多くの機会を提供するだけでなく、重要な課題も提示している。
既存のアライメント手法は、人間による注釈付き、欠陥のない命令応答ペアを利用することで、LLMを好ましい結果に導くのが一般的である。
本研究は誤り解析に基づく新しいアライメント手法を提案する。ミスの原因と回避方法を学習するために,LLMを誤った内容に故意に公開する手法である。
論文 参考訳(メタデータ) (2023-10-16T14:59:10Z) - Evaluating the Instruction-Following Robustness of Large Language Models
to Prompt Injection [70.28425745910711]
LLM(Large Language Models)は、命令追従に非常に熟練した言語である。
この能力は、迅速なインジェクション攻撃のリスクをもたらす。
このような攻撃に対する命令追従LDMの堅牢性を評価する。
論文 参考訳(メタデータ) (2023-08-17T06:21:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。