論文の概要: Emma-X: An Embodied Multimodal Action Model with Grounded Chain of Thought and Look-ahead Spatial Reasoning
- arxiv url: http://arxiv.org/abs/2412.11974v1
- Date: Mon, 16 Dec 2024 16:58:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 14:02:55.877769
- Title: Emma-X: An Embodied Multimodal Action Model with Grounded Chain of Thought and Look-ahead Spatial Reasoning
- Title(参考訳): Emma-X:思考の接地連鎖とルックアヘッド空間推論を用いた身体的マルチモーダル行動モデル
- Authors: Qi Sun, Pengfei Hong, Tej Deep Pala, Vernon Toh, U-Xuan Tan, Deepanway Ghosal, Soujanya Poria,
- Abstract要約: 思考の接地連鎖とルックアヘッド空間推論によるマルチモーダル行動モデルEmma-X
思考の接地連鎖とルックアヘッド空間推論を併用したマルチモーダル行動モデルEmma-Xを提案する。
Emma-Xは、特に空間的推論を必要とする現実世界のロボットタスクにおいて、競争ベースラインよりも優れたパフォーマンスを達成する。
- 参考スコア(独自算出の注目度): 33.441215858388986
- License:
- Abstract: Traditional reinforcement learning-based robotic control methods are often task-specific and fail to generalize across diverse environments or unseen objects and instructions. Visual Language Models (VLMs) demonstrate strong scene understanding and planning capabilities but lack the ability to generate actionable policies tailored to specific robotic embodiments. To address this, Visual-Language-Action (VLA) models have emerged, yet they face challenges in long-horizon spatial reasoning and grounded task planning. In this work, we propose the Embodied Multimodal Action Model with Grounded Chain of Thought and Look-ahead Spatial Reasoning, Emma-X. Emma-X leverages our constructed hierarchical embodiment dataset based on BridgeV2, containing 60,000 robot manipulation trajectories auto-annotated with grounded task reasoning and spatial guidance. Additionally, we introduce a trajectory segmentation strategy based on gripper states and motion trajectories, which can help mitigate hallucination in grounding subtask reasoning generation. Experimental results demonstrate that Emma-X achieves superior performance over competitive baselines, particularly in real-world robotic tasks requiring spatial reasoning.
- Abstract(参考訳): 従来の強化学習に基づくロボット制御法はタスク固有であり、様々な環境や目に見えない物体や指示を一般化できないことが多い。
視覚言語モデル(VLM)は、強いシーン理解と計画能力を示すが、特定のロボティクスの具体化に合わせて実行可能なポリシーを生成する能力は欠如している。
これを解決するために、Visual-Language-Action (VLA) モデルが登場したが、長距離空間推論と接地型タスク計画の課題に直面している。
本研究では,思考の接地連鎖とルックアヘッド空間推論を併用したマルチモーダル行動モデル,Emma-Xを提案する。
Emma-Xは、BridgeV2に基づく構築された階層的エンボディメントデータセットを活用する。
さらに、グリップ状態と運動軌跡に基づく軌道分割戦略を導入し、サブタスク推論生成における幻覚の緩和に役立てる。
実験により,Emma-Xは,特に空間的推論を必要とする実世界のロボット作業において,競争ベースラインよりも優れた性能を発揮することが示された。
関連論文リスト
- Grounding Language Models in Autonomous Loco-manipulation Tasks [3.8363685417355557]
異なるシナリオにおけるタスクに基づいて行動を学び、選択し、計画する新しいフレームワークを提案する。
我々は,大規模言語モデル(LLM)の計画と推論機能を活用し,階層的なタスクグラフを構築する。
CENTAUROロボットを用いたシミュレーションおよび実世界の実験により、言語モデルに基づくプランナーが、新しいロコ操作タスクに効率的に適応できることが示されている。
論文 参考訳(メタデータ) (2024-09-02T15:27:48Z) - Robotic Control via Embodied Chain-of-Thought Reasoning [86.6680905262442]
学習したロボット制御ポリシーの鍵となる制限は、トレーニングデータの外部で一般化できないことである。
視覚言語行動モデル(VLA)に関する最近の研究は、大規模なインターネット事前学習型視覚言語モデルを使用することで、その堅牢性と一般化能力を大幅に向上させることができることを示した。
ロボットの動作を予測する前に、VLAに対して、計画、サブタスク、動作、視覚的接地機能について複数の推論を行うために、VLAに対してEmbodied Chain-of-Thought Reasoning (ECoT)を導入する。
論文 参考訳(メタデータ) (2024-07-11T17:31:01Z) - HYPERmotion: Learning Hybrid Behavior Planning for Autonomous Loco-manipulation [7.01404330241523]
HYPERmotionは、異なるシナリオのタスクに基づいて行動を学び、選択し、計画するフレームワークである。
強化学習と全身最適化を組み合わせることで,38関節の運動を生成する。
シミュレーションと実世界の実験では、学習した動きが新しいタスクに効率的に適応できることが示されている。
論文 参考訳(メタデータ) (2024-06-20T18:21:24Z) - SAM-E: Leveraging Visual Foundation Model with Sequence Imitation for Embodied Manipulation [62.58480650443393]
Segment Anything (SAM) は、一般化可能なシーン理解とシーケンス模倣のための視覚境界モデルである。
我々は,単一パスにおけるアクションシーケンスの予測を可能にする,新しいマルチチャネルヒートマップを開発した。
論文 参考訳(メタデータ) (2024-05-30T00:32:51Z) - Grounding Language Plans in Demonstrations Through Counterfactual Perturbations [25.19071357445557]
物理領域におけるLarge Language Models(LLM)の常識的推論は、具体化されたAIにとって重要な問題でありながら未解決である。
提案手法は,2次元ナビゲーションによる模倣学習の解釈性と反応性を向上し,シミュレーションおよび実ロボット操作タスクを実現する。
論文 参考訳(メタデータ) (2024-03-25T19:04:59Z) - Unified Task and Motion Planning using Object-centric Abstractions of
Motion Constraints [56.283944756315066]
本稿では,タスクとモーションプランニングを一つの検索に統一するTAMP手法を提案する。
我々のアプローチは、オフザシェルフAIサーチの計算効率を活用して、物理的に実現可能な計画が得られるような、オブジェクト中心の動作制約の抽象化に基づいている。
論文 参考訳(メタデータ) (2023-12-29T14:00:20Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
大きな言語モデル(LLM)は、オープン語彙タスクを実行するロボットエージェントを作成することで、驚くべき成果を上げている。
LLMを用いた部分的に観測可能なタスクのための対話型計画手法を提案する。
論文 参考訳(メタデータ) (2023-12-11T22:54:44Z) - Make a Donut: Hierarchical EMD-Space Planning for Zero-Shot Deformable Manipulation with Tools [14.069149456110676]
本研究では,複雑な長期タスクに対処可能な実証自由階層型計画手法を提案する。
我々は,大規模言語モデル (LLMs) を用いて,特定のタスクに対応する高レベルステージ・バイ・ステージ・プランを記述している。
我々は、実世界のロボットプラットフォームの実験的な試行で、我々のアプローチをさらに裏付ける。
論文 参考訳(メタデータ) (2023-11-05T22:43:29Z) - RT-Trajectory: Robotic Task Generalization via Hindsight Trajectory
Sketches [74.300116260004]
一般化は、ロバストなロボット学習システムにとって最も重要なデシダータの1つである。
粗い軌道スケッチを用いたポリシー条件付け手法を提案する。
RT-Trajectoryは言語条件や目標条件よりも幅広いタスクを実行できることを示す。
論文 参考訳(メタデータ) (2023-11-03T15:31:51Z) - VoxPoser: Composable 3D Value Maps for Robotic Manipulation with
Language Models [38.503337052122234]
大規模言語モデル(LLM)は、ロボット操作のために抽出できる豊富な行動可能な知識を持っていることが示されている。
我々は,オープンな命令セットとオープンなオブジェクトセットが与えられた様々な操作タスクに対して,ロボット軌道を合成することを目指している。
筆者らは,接触に富んだインタラクションを含むシーンのダイナミックスモデルを効率的に学習することで,提案フレームワークがオンライン体験の恩恵を享受できることを実証する。
論文 参考訳(メタデータ) (2023-07-12T07:40:48Z) - ReLMoGen: Leveraging Motion Generation in Reinforcement Learning for
Mobile Manipulation [99.2543521972137]
ReLMoGenは、サブゴールを予測するための学習されたポリシーと、これらのサブゴールに到達するために必要な動作を計画し実行するためのモーションジェネレータを組み合わせたフレームワークである。
本手法は,フォトリアリスティック・シミュレーション環境における7つのロボットタスクの多種多様なセットをベンチマークする。
ReLMoGenは、テスト時に異なるモーションジェネレータ間で顕著な転送可能性を示し、実際のロボットに転送する大きな可能性を示している。
論文 参考訳(メタデータ) (2020-08-18T08:05:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。