論文の概要: Enhancing the conformal predictability of context-aware recommendation systems by using Deep Autoencoders
- arxiv url: http://arxiv.org/abs/2412.12110v1
- Date: Sat, 30 Nov 2024 18:24:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-22 08:34:03.515805
- Title: Enhancing the conformal predictability of context-aware recommendation systems by using Deep Autoencoders
- Title(参考訳): ディープオートエンコーダを用いたコンテキスト認識レコメンデーションシステムの適合予測性向上
- Authors: Saloua Zammali, Siddhant Dutta, Sadok Ben Yahia,
- Abstract要約: 本稿では,ニューラルネットワークとオートエンコーダを組み合わせることで,項目のユーザ評価を予測するフレームワークを提案する。
実世界の様々なデータセットの実験を行い、その結果を最先端のアプローチと比較する。
- 参考スコア(独自算出の注目度): 4.3012765978447565
- License:
- Abstract: In the field of Recommender Systems (RS), neural collaborative filtering represents a significant milestone by combining matrix factorization and deep neural networks to achieve promising results. Traditional methods like matrix factorization often rely on linear models, limiting their capability to capture complex interactions between users, items, and contexts. This limitation becomes particularly evident with high-dimensional datasets due to their inability to capture relationships among users, items, and contextual factors. Unsupervised learning and dimension reduction tasks utilize autoencoders, neural network-based models renowned for their capacity to encode and decode data. Autoencoders learn latent representations of inputs, reducing dataset size while capturing complex patterns and features. In this paper, we introduce a framework that combines neural contextual matrix factorization with autoencoders to predict user ratings for items. We provide a comprehensive overview of the framework's design and implementation. To evaluate its performance, we conduct experiments on various real-world datasets and compare the results against state-of-the-art approaches. We also extend the concept of conformal prediction to prediction rating and introduce a Conformal Prediction Rating (CPR). For RS, we define the nonconformity score, a key concept of conformal prediction, and demonstrate that it satisfies the exchangeability property.
- Abstract(参考訳): Recommender Systems(RS)の分野では、行列分解とディープニューラルネットワークを組み合わせて有望な結果を達成することで、ニューラルネットワークの協調フィルタリングが重要なマイルストーンとなっている。
行列分解のような伝統的な手法は、しばしば線形モデルに依存し、ユーザ、アイテム、コンテキスト間の複雑な相互作用をキャプチャする能力を制限する。
この制限は、ユーザ、アイテム、コンテキスト要素間の関係をキャプチャできないため、高次元データセットで特に顕著になる。
教師なし学習と次元削減タスクは、データのエンコードとデコード能力で有名なニューラルネットワークベースのモデルであるオートエンコーダを利用する。
オートエンコーダは入力の潜在表現を学び、複雑なパターンや特徴をキャプチャしながらデータセットのサイズを減らします。
本稿では,ニューラルネットワークとオートエンコーダを組み合わせることで,項目のユーザ評価を予測するフレームワークを提案する。
フレームワークの設計と実装について概観する。
その性能を評価するために、様々な実世界のデータセットで実験を行い、その結果を最先端のアプローチと比較する。
また、共形予測の概念を予測評価に拡張し、CPR(Conformal Prediction Rating)を導入する。
RS に対して、共形予測の重要な概念である非整合性スコアを定義し、交換性特性を満たすことを示す。
関連論文リスト
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Canonical Correlation Guided Deep Neural Network [14.188285111418516]
深層ニューラルネットワーク(CCDNN)により実現可能な標準相関学習フレームワークを提案する。
提案手法では、最適化の定式化は相関を最大化するために制限されず、代わりに正規相関を制約として行う。
相関による冗長性を低減するために、冗長性フィルタを設計する。
論文 参考訳(メタデータ) (2024-09-28T16:08:44Z) - Enhancing Graph Contrastive Learning with Reliable and Informative Augmentation for Recommendation [84.45144851024257]
離散コードによるより強力な協調情報を用いて、コントラスト的なビューを構築することにより、グラフのコントラスト学習を強化することを目的とした、新しいフレームワークを提案する。
中心となる考え方は、ユーザとアイテムを協調情報に富んだ離散コードにマッピングし、信頼性と情報に富んだコントラッシブなビュー生成を可能にすることである。
論文 参考訳(メタデータ) (2024-09-09T14:04:17Z) - Measuring the Predictability of Recommender Systems using Structural Complexity Metrics [0.6429591199690016]
本研究では,ユーザ・イテム評価行列の構造的複雑さに基づいて,RSの予測可能性を測定するためのデータ駆動メトリクスを提案する。
予測可能性の低いスコアは、複雑で予測不可能なユーザとイテムのインタラクションを示し、高い予測可能性スコアは予測可能性を持つより複雑なパターンを明らかにします。
論文 参考訳(メタデータ) (2024-04-12T22:00:27Z) - Subject-specific Deep Neural Networks for Count Data with
High-cardinality Categorical Features [1.2289361708127877]
本稿では,ポアソンディープニューラルネットワークにガンマランダム効果を導入するための新しい階層的確率学習フレームワークを提案する。
提案手法は,固定パラメータの最大極大推定器とランダム効果の最適非バイアス予測器を同時に生成する。
最先端のネットワークアーキテクチャは、提案されたh-likelihoodフレームワークに容易に実装できる。
論文 参考訳(メタデータ) (2023-10-18T01:54:48Z) - Ordinal Graph Gamma Belief Network for Social Recommender Systems [54.9487910312535]
我々は,階層型ベイズモデルであるオーディナルグラフファクター解析(OGFA)を開発し,ユーザ・イテムとユーザ・ユーザインタラクションを共同でモデル化する。
OGFAは、優れたレコメンデーションパフォーマンスを達成するだけでなく、代表ユーザの好みに応じた解釈可能な潜在因子も抽出する。
我々はOGFAを,マルチ確率層深層確率モデルであるオーディナルグラフガンマ信念ネットワークに拡張する。
論文 参考訳(メタデータ) (2022-09-12T09:19:22Z) - ARM-Net: Adaptive Relation Modeling Network for Structured Data [29.94433633729326]
ARM-Netは、構造化データに適した適応関係モデリングネットワークであり、リレーショナルデータのためのARM-Netに基づく軽量フレームワークARMORである。
ARM-Netは既存のモデルより一貫して優れており、データセットに対してより解釈可能な予測を提供する。
論文 参考訳(メタデータ) (2021-07-05T07:37:24Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
最近のコンピュータビジョンの進歩は、分類モデルの一般化能力を改善するために、逆データ拡張を利用する。
本稿では,中間的特徴埋め込みにおける敵対的拡張を提唱する効率的かつ効率的な代替手法を提案する。
代表的なバックボーンネットワークを用いて,多様な視覚認識タスクにまたがる提案手法を検証する。
論文 参考訳(メタデータ) (2021-03-22T20:36:34Z) - Generative Counterfactuals for Neural Networks via Attribute-Informed
Perturbation [51.29486247405601]
AIP(Attribute-Informed Perturbation)の提案により,生データインスタンスの反事実を生成するフレームワークを設計する。
異なる属性を条件とした生成モデルを利用することで、所望のラベルとの反事実を効果的かつ効率的に得ることができる。
実世界のテキストや画像に対する実験結果から, 設計したフレームワークの有効性, サンプル品質, および効率が示された。
論文 参考訳(メタデータ) (2021-01-18T08:37:13Z) - Neural Representations in Hybrid Recommender Systems: Prediction versus
Regularization [8.384351067134999]
我々は、予測のための神経表現(NRP)フレームワークを定義し、オートエンコーダベースのレコメンデーションシステムに適用する。
また、NRPフレームワークを、ユーザやアイテム情報を再構成することなく評価を予測できる直接ニューラルネットワーク構造に適用する。
その結果、ニューラル表現は正規化よりも予測に優れており、NRPフレームワークと直接ニューラルネットワーク構造が組み合わさって、予測タスクにおける最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2020-10-12T23:12:49Z) - Towards Open-World Recommendation: An Inductive Model-based
Collaborative Filtering Approach [115.76667128325361]
推奨モデルは、基礎となるユーザの関心を効果的に見積もり、将来の行動を予測することができる。
2つの表現モデルを含む帰納的協調フィルタリングフレームワークを提案する。
本モデルでは,限られたトレーニングレーティングと新規の未確認ユーザを対象に,数ショットのユーザに対して有望なレコメンデーションを行う。
論文 参考訳(メタデータ) (2020-07-09T14:31:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。