GAMED: Knowledge Adaptive Multi-Experts Decoupling for Multimodal Fake News Detection
- URL: http://arxiv.org/abs/2412.12164v1
- Date: Wed, 11 Dec 2024 19:12:22 GMT
- Title: GAMED: Knowledge Adaptive Multi-Experts Decoupling for Multimodal Fake News Detection
- Authors: Lingzhi Shen, Yunfei Long, Xiaohao Cai, Imran Razzak, Guanming Chen, Kang Liu, Shoaib Jameel,
- Abstract summary: Multimodal fake news detection often involves modelling heterogeneous data sources, such as vision and language.
This paper develops a significantly novel approach, GAMED, for multimodal modelling.
It focuses on generating distinctive and discriminative features through modal decoupling to enhance cross-modal synergies.
- Score: 18.157900272828602
- License:
- Abstract: Multimodal fake news detection often involves modelling heterogeneous data sources, such as vision and language. Existing detection methods typically rely on fusion effectiveness and cross-modal consistency to model the content, complicating understanding how each modality affects prediction accuracy. Additionally, these methods are primarily based on static feature modelling, making it difficult to adapt to the dynamic changes and relationships between different data modalities. This paper develops a significantly novel approach, GAMED, for multimodal modelling, which focuses on generating distinctive and discriminative features through modal decoupling to enhance cross-modal synergies, thereby optimizing overall performance in the detection process. GAMED leverages multiple parallel expert networks to refine features and pre-embed semantic knowledge to improve the experts' ability in information selection and viewpoint sharing. Subsequently, the feature distribution of each modality is adaptively adjusted based on the respective experts' opinions. GAMED also introduces a novel classification technique to dynamically manage contributions from different modalities, while improving the explainability of decisions. Experimental results on the Fakeddit and Yang datasets demonstrate that GAMED performs better than recently developed state-of-the-art models. The source code can be accessed at https://github.com/slz0925/GAMED.
Related papers
- DiffMM: Multi-Modal Diffusion Model for Recommendation [19.43775593283657]
We propose a novel multi-modal graph diffusion model for recommendation called DiffMM.
Our framework integrates a modality-aware graph diffusion model with a cross-modal contrastive learning paradigm to improve modality-aware user representation learning.
arXiv Detail & Related papers (2024-06-17T17:35:54Z) - MMA-DFER: MultiModal Adaptation of unimodal models for Dynamic Facial Expression Recognition in-the-wild [81.32127423981426]
Multimodal emotion recognition based on audio and video data is important for real-world applications.
Recent methods have focused on exploiting advances of self-supervised learning (SSL) for pre-training of strong multimodal encoders.
We propose a different perspective on the problem and investigate the advancement of multimodal DFER performance by adapting SSL-pre-trained disjoint unimodal encoders.
arXiv Detail & Related papers (2024-04-13T13:39:26Z) - NativE: Multi-modal Knowledge Graph Completion in the Wild [51.80447197290866]
We propose a comprehensive framework NativE to achieve MMKGC in the wild.
NativE proposes a relation-guided dual adaptive fusion module that enables adaptive fusion for any modalities.
We construct a new benchmark called WildKGC with five datasets to evaluate our method.
arXiv Detail & Related papers (2024-03-28T03:04:00Z) - Multimodal Representation Learning by Alternating Unimodal Adaptation [73.15829571740866]
We propose MLA (Multimodal Learning with Alternating Unimodal Adaptation) to overcome challenges where some modalities appear more dominant than others during multimodal learning.
MLA reframes the conventional joint multimodal learning process by transforming it into an alternating unimodal learning process.
It captures cross-modal interactions through a shared head, which undergoes continuous optimization across different modalities.
Experiments are conducted on five diverse datasets, encompassing scenarios with complete modalities and scenarios with missing modalities.
arXiv Detail & Related papers (2023-11-17T18:57:40Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
We construct a transformer-based framework for multi-modal manipulation detection and grounding tasks.
Our framework simultaneously explores modality-specific features while preserving the capability for multi-modal alignment.
We propose an implicit manipulation query (IMQ) that adaptively aggregates global contextual cues within each modality.
arXiv Detail & Related papers (2023-09-22T06:55:41Z) - StableLLaVA: Enhanced Visual Instruction Tuning with Synthesized
Image-Dialogue Data [129.92449761766025]
We propose a novel data collection methodology that synchronously synthesizes images and dialogues for visual instruction tuning.
This approach harnesses the power of generative models, marrying the abilities of ChatGPT and text-to-image generative models.
Our research includes comprehensive experiments conducted on various datasets.
arXiv Detail & Related papers (2023-08-20T12:43:52Z) - Generalizing Multimodal Variational Methods to Sets [35.69942798534849]
This paper presents a novel variational method on sets called the Set Multimodal VAE (SMVAE) for learning a multimodal latent space.
By modeling the joint-modality posterior distribution directly, the proposed SMVAE learns to exchange information between multiple modalities and compensate for the drawbacks caused by factorization.
arXiv Detail & Related papers (2022-12-19T23:50:19Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.