The impact of AI on engineering design procedures for dynamical systems
- URL: http://arxiv.org/abs/2412.12230v1
- Date: Mon, 16 Dec 2024 14:26:27 GMT
- Title: The impact of AI on engineering design procedures for dynamical systems
- Authors: Kristin M. de Payrebrune, Kathrin Flaßkamp, Tom Ströhla, Thomas Sattel, Dieter Bestle, Benedict Röder, Peter Eberhard, Sebastian Peitz, Marcus Stoffel, Gulakala Rutwik, Borse Aditya, Meike Wohlleben, Walter Sextro, Maximilian Raff, C. David Remy, Manish Yadav, Merten Stender, Jan van Delden, Timo Lüddecke, Sabine C. Langer, Julius Schultz, Christopher Blech,
- Abstract summary: We examine the potential for integrating AI into the engineering design process, using the V-model from the VDI guideline 2206.
We identify and classify AI methods based on their suitability for specific stages within the engineering product design workflow.
We present a series of application examples where AI-assisted design has been successfully implemented by the authors.
- Score: 4.222932496304428
- License:
- Abstract: Artificial intelligence (AI) is driving transformative changes across numerous fields, revolutionizing conventional processes and creating new opportunities for innovation. The development of mechatronic systems is undergoing a similar transformation. Over the past decade, modeling, simulation, and optimization techniques have become integral to the design process, paving the way for the adoption of AI-based methods. In this paper, we examine the potential for integrating AI into the engineering design process, using the V-model from the VDI guideline 2206, considered the state-of-the-art in product design, as a foundation. We identify and classify AI methods based on their suitability for specific stages within the engineering product design workflow. Furthermore, we present a series of application examples where AI-assisted design has been successfully implemented by the authors. These examples, drawn from research projects within the DFG Priority Program \emph{SPP~2353: Daring More Intelligence - Design Assistants in Mechanics and Dynamics}, showcase a diverse range of applications across mechanics and mechatronics, including areas such as acoustics and robotics.
Related papers
- Generative AI and Empirical Software Engineering: A Paradigm Shift [8.65285948382426]
The widespread adoption of generative AI in software engineering marks a paradigm shift.
This paper examines how integrating AI into software engineering challenges traditional research paradigms.
arXiv Detail & Related papers (2025-02-12T04:13:07Z) - Next-Gen Software Engineering. Big Models for AI-Augmented Model-Driven Software Engineering [0.0]
The paper provides an overview of the current state of AI-augmented software engineering and develops a corresponding taxonomy, AI4SE.
A vision of AI-assisted Big Models in SE is put forth, with the aim of capitalising on the advantages inherent to both approaches in the context of software development.
arXiv Detail & Related papers (2024-09-26T16:49:57Z) - Artificial intelligence inspired freeform optics design: a review [5.118772741438762]
This article reviews the latest developments in AI applications within freeform optics design.
It addresses the benefits of AI, such as improved accuracy and performance, alongside challenges like data requirements, model interpretability, and computational complexity.
The future of AI in freeform optics design looks promising, with potential advancements in hybrid design methods, interpretable AI, AI-driven manufacturing, and targeted research for specific applications.
arXiv Detail & Related papers (2024-09-18T00:53:27Z) - Geometric Deep Learning for Computer-Aided Design: A Survey [85.79012726689511]
This survey offers a comprehensive overview of learning-based methods in computer-aided design.
It includes similarity analysis and retrieval, 2D and 3D CAD model synthesis, and CAD generation from point clouds.
It provides a complete list of benchmark datasets and their characteristics, along with open-source codes that have propelled research in this domain.
arXiv Detail & Related papers (2024-02-27T17:11:35Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - Selected Trends in Artificial Intelligence for Space Applications [69.3474006357492]
This chapter focuses on differentiable intelligence and on-board machine learning.
We discuss a few selected projects originating from the European Space Agency's (ESA) Advanced Concepts Team (ACT)
arXiv Detail & Related papers (2022-12-10T07:49:50Z) - Design Space Exploration and Explanation via Conditional Variational
Autoencoders in Meta-model-based Conceptual Design of Pedestrian Bridges [52.77024349608834]
This paper provides a performance-driven design exploration framework to augment the human designer through a Conditional Variational Autoencoder (CVAE)
The CVAE is trained on 18'000 synthetically generated instances of a pedestrian bridge in Switzerland.
arXiv Detail & Related papers (2022-11-29T17:28:31Z) - Design of Unmanned Air Vehicles Using Transformer Surrogate Models [8.914156789222266]
We develop an AI Designer that synthesizes novel unmanned aerial vehicles (UAVs) designs.
Our approach uses a deep transformer model with a novel domain-specific encoding such that we can evaluate the performance of new proposed designs without running expensive flight dynamics models and CAD tools.
arXiv Detail & Related papers (2022-11-11T21:22:21Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
We propose a novel approach to enable Model-Driven Software Engineering and Model-Driven AI Engineering.
In particular, we support Automated ML, thus assisting software engineers without deep AI knowledge in developing AI-intensive systems.
arXiv Detail & Related papers (2022-03-06T10:12:56Z) - Computational Rational Engineering and Development: Synergies and
Opportunities [0.0]
This paper surveys progress and formulates perspectives targeted on the automation and autonomization of engineering development processes.
In order to go beyond conventional human-centered, tool-based CAE approaches, it is suggested to extend the framework of Computational Rationality to challenges in design, engineering and development.
arXiv Detail & Related papers (2021-12-27T19:11:34Z) - Technology Readiness Levels for AI & ML [79.22051549519989]
Development of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
Engineering systems follow well-defined processes and testing standards to streamline development for high-quality, reliable results.
We propose a proven systems engineering approach for machine learning development and deployment.
arXiv Detail & Related papers (2020-06-21T17:14:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.