The impact of AI on engineering design procedures for dynamical systems
- URL: http://arxiv.org/abs/2412.12230v1
- Date: Mon, 16 Dec 2024 14:26:27 GMT
- Title: The impact of AI on engineering design procedures for dynamical systems
- Authors: Kristin M. de Payrebrune, Kathrin Flaßkamp, Tom Ströhla, Thomas Sattel, Dieter Bestle, Benedict Röder, Peter Eberhard, Sebastian Peitz, Marcus Stoffel, Gulakala Rutwik, Borse Aditya, Meike Wohlleben, Walter Sextro, Maximilian Raff, C. David Remy, Manish Yadav, Merten Stender, Jan van Delden, Timo Lüddecke, Sabine C. Langer, Julius Schultz, Christopher Blech,
- Abstract summary: We examine the potential for integrating AI into the engineering design process, using the V-model from the VDI guideline 2206.<n>We identify and classify AI methods based on their suitability for specific stages within the engineering product design workflow.<n>We present a series of application examples where AI-assisted design has been successfully implemented by the authors.
- Score: 4.222932496304428
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial intelligence (AI) is driving transformative changes across numerous fields, revolutionizing conventional processes and creating new opportunities for innovation. The development of mechatronic systems is undergoing a similar transformation. Over the past decade, modeling, simulation, and optimization techniques have become integral to the design process, paving the way for the adoption of AI-based methods. In this paper, we examine the potential for integrating AI into the engineering design process, using the V-model from the VDI guideline 2206, considered the state-of-the-art in product design, as a foundation. We identify and classify AI methods based on their suitability for specific stages within the engineering product design workflow. Furthermore, we present a series of application examples where AI-assisted design has been successfully implemented by the authors. These examples, drawn from research projects within the DFG Priority Program \emph{SPP~2353: Daring More Intelligence - Design Assistants in Mechanics and Dynamics}, showcase a diverse range of applications across mechanics and mechatronics, including areas such as acoustics and robotics.
Related papers
- An LLM-enabled Multi-Agent Autonomous Mechatronics Design Framework [49.633199780510864]
This work proposes a multi-agent autonomous mechatronics design framework, integrating expertise across mechanical design, optimization, electronics, and software engineering.
operating primarily through a language-driven workflow, the framework incorporates structured human feedback to ensure robust performance under real-world constraints.
A fully functional autonomous vessel was developed with optimized propulsion, cost-effective electronics, and advanced control.
arXiv Detail & Related papers (2025-04-20T16:57:45Z) - Towards practicable Machine Learning development using AI Engineering Blueprints [0.8654896256058138]
Small and medium-sized enterprises (SMEs) face challenges when implementing AI in their products or processes.
This paper proposes a research plan designed to develop blueprints for the creation of proprietary machine learning (ML) models.
arXiv Detail & Related papers (2025-04-08T19:28:05Z) - AI Agents in Engineering Design: A Multi-Agent Framework for Aesthetic and Aerodynamic Car Design [24.258618104493532]
We introduce the concept of "Design Agents" for engineering applications, particularly focusing on the automotive design process.
Our framework integrates AI-driven design agents into the traditional engineering workflow to augment creativity, enhance efficiency, and significantly accelerate the overall design cycle.
arXiv Detail & Related papers (2025-03-30T04:57:17Z) - AI Automatons: AI Systems Intended to Imitate Humans [54.19152688545896]
There is a growing proliferation of AI systems designed to mimic people's behavior, work, abilities, likenesses, or humanness.
The research, design, deployment, and availability of such AI systems have prompted growing concerns about a wide range of possible legal, ethical, and other social impacts.
arXiv Detail & Related papers (2025-03-04T03:55:38Z) - Generative AI and Empirical Software Engineering: A Paradigm Shift [8.65285948382426]
The widespread adoption of generative AI in software engineering marks a paradigm shift.
This paper examines how integrating AI into software engineering challenges traditional research paradigms.
arXiv Detail & Related papers (2025-02-12T04:13:07Z) - Artificial intelligence inspired freeform optics design: a review [5.118772741438762]
This article reviews the latest developments in AI applications within freeform optics design.
It addresses the benefits of AI, such as improved accuracy and performance, alongside challenges like data requirements, model interpretability, and computational complexity.
The future of AI in freeform optics design looks promising, with potential advancements in hybrid design methods, interpretable AI, AI-driven manufacturing, and targeted research for specific applications.
arXiv Detail & Related papers (2024-09-18T00:53:27Z) - Creation of Novel Soft Robot Designs using Generative AI [0.3584072049481527]
We explore the use of generative AI to create 3D models of soft actuators.
In this paper, we create a dataset of over 70 text-shape pairings of soft pneumatic robot actuator designs.
By employing transfer learning and data augmentation techniques, we significantly improve the performance of the diffusion model.
arXiv Detail & Related papers (2024-05-03T02:55:27Z) - Prototyping with Prompts: Emerging Approaches and Challenges in Generative AI Design for Collaborative Software Teams [2.237039275844699]
Generative AI models are increasingly being integrated into human task, enabling the production of expressive content.
Unlike traditional human-AI design methods, the new approach to designing generative capabilities focuses heavily on prompt engineering strategies.
Our findings highlight emerging practices and role shifts in AI system prototyping among multistakeholder teams.
arXiv Detail & Related papers (2024-02-27T17:56:10Z) - Geometric Deep Learning for Computer-Aided Design: A Survey [85.79012726689511]
This survey offers a comprehensive overview of learning-based methods in computer-aided design.
It includes similarity analysis and retrieval, 2D and 3D CAD model synthesis, and CAD generation from point clouds.
It provides a complete list of benchmark datasets and their characteristics, along with open-source codes that have propelled research in this domain.
arXiv Detail & Related papers (2024-02-27T17:11:35Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - Selected Trends in Artificial Intelligence for Space Applications [69.3474006357492]
This chapter focuses on differentiable intelligence and on-board machine learning.
We discuss a few selected projects originating from the European Space Agency's (ESA) Advanced Concepts Team (ACT)
arXiv Detail & Related papers (2022-12-10T07:49:50Z) - Design Space Exploration and Explanation via Conditional Variational
Autoencoders in Meta-model-based Conceptual Design of Pedestrian Bridges [52.77024349608834]
This paper provides a performance-driven design exploration framework to augment the human designer through a Conditional Variational Autoencoder (CVAE)
The CVAE is trained on 18'000 synthetically generated instances of a pedestrian bridge in Switzerland.
arXiv Detail & Related papers (2022-11-29T17:28:31Z) - Design of Unmanned Air Vehicles Using Transformer Surrogate Models [8.914156789222266]
We develop an AI Designer that synthesizes novel unmanned aerial vehicles (UAVs) designs.
Our approach uses a deep transformer model with a novel domain-specific encoding such that we can evaluate the performance of new proposed designs without running expensive flight dynamics models and CAD tools.
arXiv Detail & Related papers (2022-11-11T21:22:21Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
We propose a novel approach to enable Model-Driven Software Engineering and Model-Driven AI Engineering.
In particular, we support Automated ML, thus assisting software engineers without deep AI knowledge in developing AI-intensive systems.
arXiv Detail & Related papers (2022-03-06T10:12:56Z) - Computational Rational Engineering and Development: Synergies and
Opportunities [0.0]
This paper surveys progress and formulates perspectives targeted on the automation and autonomization of engineering development processes.
In order to go beyond conventional human-centered, tool-based CAE approaches, it is suggested to extend the framework of Computational Rationality to challenges in design, engineering and development.
arXiv Detail & Related papers (2021-12-27T19:11:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.