論文の概要: Enhanced Momentum with Momentum Transformers
- arxiv url: http://arxiv.org/abs/2412.12516v1
- Date: Tue, 17 Dec 2024 04:11:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-18 13:57:06.236729
- Title: Enhanced Momentum with Momentum Transformers
- Title(参考訳): モメンタム変換器を用いたモメンタムの強化
- Authors: Max Mason, Waasi A Jagirdar, David Huang, Rahul Murugan,
- Abstract要約: 私たちは、Trding with the Momentum Transformer: An Intelligent and Interpretable Architecture to equitiesという論文で紹介されたアイデアを拡張します。
局所パターン処理に最適化された従来のLong Short-Term Memory(LSTM)モデルとは異なり、アテンションメカニズムはトレーニングウィンドウ内のすべての事前時間ステップに直接アクセスすることができる。
このハイブリッド設計は、LSTMと組み合わせて、長期的な依存関係をキャプチャし、トランザクションコストを考慮に入れたシナリオのパフォーマンスを高め、市場環境の進化にシームレスに適応することを可能にする。
- 参考スコア(独自算出の注目度): 0.46498278084317696
- License:
- Abstract: The primary objective of this research is to build a Momentum Transformer that is expected to outperform benchmark time-series momentum and mean-reversion trading strategies. We extend the ideas introduced in the paper Trading with the Momentum Transformer: An Intelligent and Interpretable Architecture to equities as the original paper primarily only builds upon futures and equity indices. Unlike conventional Long Short-Term Memory (LSTM) models, which operate sequentially and are optimized for processing local patterns, an attention mechanism equips our architecture with direct access to all prior time steps in the training window. This hybrid design, combining attention with an LSTM, enables the model to capture long-term dependencies, enhance performance in scenarios accounting for transaction costs, and seamlessly adapt to evolving market conditions, such as those witnessed during the Covid Pandemic. We average 4.14% returns which is similar to the original papers results. Our Sharpe is lower at an average of 1.12 due to much higher volatility which may be due to stocks being inherently more volatile than futures and indices.
- Abstract(参考訳): 本研究の主な目的は、ベンチマーク時系列運動量および平均回帰トレーディング戦略を上回ることが期待されるMomentum Transformerを構築することである。
私たちは、Trding with the Momentum Transformer: An Intelligent and Interpretable Architecture to equitiesという論文で導入されたアイデアを拡張します。
局所パターン処理に最適化された従来のLong Short-Term Memory(LSTM)モデルとは異なり、アテンションメカニズムはトレーニングウィンドウ内のすべての事前時間ステップに直接アクセスすることができる。
このハイブリッド設計は、LSTMと組み合わせて、長期的依存関係をキャプチャし、トランザクションコストを考慮したシナリオのパフォーマンスを高め、コビッド・パンデミックで目撃されたような市場状況にシームレスに適応することを可能にする。
平均4.14%のリターンは、オリジナルの論文と類似している。
私たちのシャープは、先物や指標よりも本質的に揮発性が高いため、ボラティリティがはるかに高いため、平均1.12で低い。
関連論文リスト
- BreakGPT: Leveraging Large Language Models for Predicting Asset Price Surges [55.2480439325792]
本稿では,時系列予測や資産価格の急上昇の予測に特化して,新たな大規模言語モデル(LLM)アーキテクチャであるBreakGPTを紹介する。
我々は、最小限のトレーニングで財務予測を行うための有望なソリューションとしてBreakGPTを紹介し、局所的およびグローバルな時間的依存関係をキャプチャする強力な競合相手として紹介する。
論文 参考訳(メタデータ) (2024-11-09T05:40:32Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - HireVAE: An Online and Adaptive Factor Model Based on Hierarchical and
Regime-Switch VAE [113.47287249524008]
オンラインで適応的な環境で株価予測を行うファクターモデルを構築することは、依然としてオープンな疑問である。
本稿では,オンラインおよび適応型要素モデルであるHireVAEを,市場状況とストックワイド潜在要因の関係を埋め込んだ階層型潜在空間として提案する。
4つの一般的な実市場ベンチマークにおいて、提案されたHireVAEは、以前の手法よりもアクティブリターンの点で優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2023-06-05T12:58:13Z) - Regime-based Implied Stochastic Volatility Model for Crypto Option
Pricing [0.0]
既存の手法は、新興デジタルアセット(DA)の揮発性の性質に対処できない
インプリッドボラティリティモデル(ISVM)による市場システム(MR)クラスタリングの最近の進歩を活用する。
ISVMは、インプリートボラティリティ(IV)データを使用することで、各感情駆動期間に投資家の期待を組み込むことができる。
MR-ISVMは,オプション価格モデルの高次特性におけるジャンプへの複雑な適応の負担を克服するために有効であることを示す。
論文 参考訳(メタデータ) (2022-08-15T15:31:42Z) - Long Short-Term Memory Neural Network for Financial Time Series [0.0]
株価変動の予測のために,単体および並列長短期記憶ニューラルネットワークのアンサンブルを提案する。
ストレートなトレーディング戦略では、ランダムに選択されたポートフォリオと指数のすべての株を含むポートフォリオを比較すると、LSTMアンサンブルから得られたポートフォリオが平均的なリターンと時間とともに高い累積リターンを提供することを示している。
論文 参考訳(メタデータ) (2022-01-20T15:17:26Z) - Trading with the Momentum Transformer: An Intelligent and Interpretable
Architecture [2.580765958706854]
我々は、ベンチマークを上回るアテンションベースのアーキテクチャであるMomentum Transformerを紹介した。
注意パターンの顕著な構造を観察し,運動量回転点における重要なピークを観測した。
解釈可能な変数選択ネットワークを追加することで、PDは日々のリターンデータに基づいて、モデルがトレーディングから遠ざけるのにどう役立つかを観察する。
論文 参考訳(メタデータ) (2021-12-16T00:04:12Z) - Multi-Transformer: A New Neural Network-Based Architecture for
Forecasting S&P Volatility [0.0]
本稿では,機械学習と深層学習に基づくより正確なストックボラティリティモデルを提案する。
本稿では,Multi-Transformerと呼ばれるニューラルネットワークアーキテクチャを提案する。
この論文は、ボラティリティ予測モデルに使用されるために、従来のトランスフォーマー層にも適応している。
論文 参考訳(メタデータ) (2021-09-26T14:47:04Z) - Learning Multiple Stock Trading Patterns with Temporal Routing Adaptor
and Optimal Transport [8.617532047238461]
本稿では,複数の株取引パターンをモデル化し,既存の株価予測モデルを強化するための新しいアーキテクチャであるTemporal Adaptor(TRA)を提案する。
TRAは、複数のパターンを学習するための独立した予測器と、異なる予測器にサンプルをディスパッチするルータで構成される軽量モジュールである。
提案手法は,情報係数を0.053から0.059へ,情報係数を0.051から0.056に改善できることを示す。
論文 参考訳(メタデータ) (2021-06-24T12:19:45Z) - Deep Stock Predictions [58.720142291102135]
本稿では,Long Short Term Memory (LSTM) ニューラルネットワークを用いてポートフォリオ最適化を行うトレーディング戦略の設計について考察する。
次に、LSTMのトレーニングに使用する損失関数をカスタマイズし、利益を上げる。
カスタマイズされた損失関数を持つLSTMモデルは、ARIMAのような回帰ベースライン上でのトレーニングボットの性能を向上させる。
論文 参考訳(メタデータ) (2020-06-08T23:37:47Z) - A Deep Reinforcement Learning Framework for Continuous Intraday Market
Bidding [69.37299910149981]
再生可能エネルギー源統合の成功の鍵となる要素は、エネルギー貯蔵の利用である。
欧州の継続的な日内市場におけるエネルギー貯蔵の戦略的関与をモデル化するための新しい枠組みを提案する。
本アルゴリズムの分散バージョンは, サンプル効率のため, この問題を解決するために選択される。
その結果, エージェントは, ベンチマーク戦略よりも平均的収益率の高い政策に収束することが示唆された。
論文 参考訳(メタデータ) (2020-04-13T13:50:13Z) - Transformer Hawkes Process [79.16290557505211]
本稿では,長期的依存関係を捕捉する自己認識機構を利用したTransformer Hawkes Process (THP) モデルを提案する。
THPは、有意なマージンによる可能性と事象予測の精度の両方の観点から、既存のモデルより優れている。
本稿では、THPが関係情報を組み込む際に、複数の点過程を学習する際の予測性能の改善を実現する具体例を示す。
論文 参考訳(メタデータ) (2020-02-21T13:48:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。