論文の概要: Shared Attention-based Autoencoder with Hierarchical Fusion-based Graph Convolution Network for sEEG SOZ Identification
- arxiv url: http://arxiv.org/abs/2412.12651v1
- Date: Tue, 17 Dec 2024 08:20:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-18 14:00:02.420598
- Title: Shared Attention-based Autoencoder with Hierarchical Fusion-based Graph Convolution Network for sEEG SOZ Identification
- Title(参考訳): 階層型核融合グラフ畳み込みネットワークを用いたSEEG SOZ識別用共有アテンションベースオートエンコーダ
- Authors: Huachao Yan, Kailing Guo, Shiwei Song, Yihai Dai, Xiaoqiang Wei, Xiaofen Xing, Xiangmin Xu,
- Abstract要約: 発作発症ゾーン(SOZ)の診断は神経外科の課題であり、脳電図(sEEG)が重要な技術である。
sEEG SOZの同定において、既存の研究はてんかん情報の患者内表現にのみ焦点をあてている。
本稿では、上記の課題に対処するために、共有注意ベースオートエンコーダ(sATAE)を提案する。
- 参考スコア(独自算出の注目度): 10.413397851804152
- License:
- Abstract: Diagnosing seizure onset zone (SOZ) is a challenge in neurosurgery, where stereoelectroencephalography (sEEG) serves as a critical technique. In sEEG SOZ identification, the existing studies focus solely on the intra-patient representation of epileptic information, overlooking the general features of epilepsy across patients and feature interdependencies between feature elements in each contact site. In order to address the aforementioned challenges, we propose the shared attention-based autoencoder (sATAE). sATAE is trained by sEEG data across all patients, with attention blocks introduced to enhance the representation of interdependencies between feature elements. Considering the spatial diversity of sEEG across patients, we introduce graph-based method for identification SOZ of each patient. However, the current graph-based methods for sEEG SOZ identification rely exclusively on static graphs to model epileptic networks. Inspired by the finding of neuroscience that epileptic network is intricately characterized by the interplay of sophisticated equilibrium between fluctuating and stable states, we design the hierarchical fusion-based graph convolution network (HFGCN) to identify the SOZ. HFGCN integrates the dynamic and static characteristics of epileptic networks through hierarchical weighting across different hierarchies, facilitating a more comprehensive learning of epileptic features and enriching node information for sEEG SOZ identification. Combining sATAE and HFGCN, we perform comprehensive experiments with sATAE-HFGCN on the self-build sEEG dataset, which includes sEEG data from 17 patients with temporal lobe epilepsy. The results show that our method, sATAE-HFGCN, achieves superior performance for identifying the SOZ of each patient, effectively addressing the aforementioned challenges, providing an efficient solution for sEEG-based SOZ identification.
- Abstract(参考訳): 発作発症ゾーン(SOZ)の診断は神経外科の課題であり、脳電図(sEEG)が重要な技術である。
sEEG SOZの同定において、既存の研究は、患者間でのてんかんの一般的な特徴と、各接触部位における特徴要素間の相違を見越して、てんかん情報の患者内表現のみに焦点を当てている。
上記の課題に対処するために,共有アテンションベースのオートエンコーダ(sATAE)を提案する。
sATAEは全患者にわたるsEEGデータによって訓練され、特徴要素間の相互依存性の表現を強化するために注意ブロックが導入された。
患者間でのSEEGの空間的多様性を考慮し,各患者のSOZを識別するためのグラフベースの方法を提案する。
しかし、sEEG SOZ識別のための現在のグラフベースの手法は、エピネプティクスネットワークをモデル化するための静的グラフのみに依存している。
そこで我々は, 階層型融合グラフ畳み込みネットワーク(HFGCN)を設計し, SOZを同定する。
HFGCNは、階層的な重み付けを通じて、エピネプティクスネットワークの動的および静的な特性を統合し、より包括的なエピネプティクス特徴の学習と、sEEG SOZ識別のためのノード情報強化を容易にする。
sATAEとHFGCNを組み合わせることで、側頭葉てんかん17例のsEEGデータを含む自己構築sEEGデータセット上で、sATAE-HFGCNを包括的に実験する。
その結果,SATAE-HFGCN法は,各患者のSOZの同定に優れた性能を示し,上記の課題を効果的に解決し,sEEGに基づくSOZの同定に有効なソリューションを提供することができた。
関連論文リスト
- Decoding Human Emotions: Analyzing Multi-Channel EEG Data using LSTM Networks [0.0]
本研究では、Long Short-Term Memory (LSTM) ネットワークを用いて脳波信号を解析することにより、感情状態分類の予測精度を向上することを目的とする。
DEAPとして知られる多チャンネル脳波記録の一般的なデータセットを用いて、LSTMネットワークの特性を活用して、脳波信号データ内の時間的依存関係を処理する。
感情認識モデルの能力は, それぞれ89.89%, 90.33%, 90.70%, 90.54%であった。
論文 参考訳(メタデータ) (2024-08-19T18:10:47Z) - RISE-iEEG: Robust to Inter-Subject Electrodes Implantation Variability iEEG Classifier [0.0]
RISE-iEEGはRobust Inter-Subject Electrode implantation Variability iEEGの略である。
iEEGデコーダモデルを開発し,各患者に電極の座標を必要とせずに複数の患者のデータに適用した。
分析の結果, RISE-iEEG は HTNet や EEGNet よりも F1 よりも10%高い値を示した。
論文 参考訳(メタデータ) (2024-08-12T18:33:19Z) - Parkinson's Disease Detection from Resting State EEG using Multi-Head Graph Structure Learning with Gradient Weighted Graph Attention Explanations [9.544065991313062]
静止状態脳波を用いたパーキンソン病(PD)検出のための新しいグラフニューラルネットワーク(GNN)手法を提案する。
コントラスト学習を用いた構造化グローバル畳み込みを用いて,データ制限による複雑な特徴をモデル化する。
UCサンディエゴ・パーキンソン病脳波データセットを用いて本手法を開発,評価し,主観的離脱検診において69.40%の精度で検出した。
論文 参考訳(メタデータ) (2024-08-01T20:54:33Z) - EEG decoding with conditional identification information [7.873458431535408]
脳波信号を復号することは、人間の脳を解き放ち、脳とコンピュータのインターフェースを進化させるのに不可欠である。
従来の機械学習アルゴリズムは、高ノイズレベルと脳波信号の個人間変動によって妨げられている。
ディープニューラルネットワーク(DNN)の最近の進歩は、その高度な非線形モデリング能力のために、将来性を示している。
論文 参考訳(メタデータ) (2024-03-21T13:38:59Z) - Polar-Net: A Clinical-Friendly Model for Alzheimer's Disease Detection
in OCTA Images [53.235117594102675]
オプティカルコヒーレンス・トモグラフィーは、網膜微小血管の画像化によってアルツハイマー病(AD)を検出するための有望なツールである。
我々はPolar-Netと呼ばれる新しいディープラーニングフレームワークを提案し、解釈可能な結果を提供し、臨床上の事前知識を活用する。
Polar-Netは既存の最先端の手法よりも優れており,網膜血管変化とADとの関連性について,より貴重な病理学的証拠を提供する。
論文 参考訳(メタデータ) (2023-11-10T11:49:49Z) - Graph Convolutional Network with Connectivity Uncertainty for EEG-based
Emotion Recognition [20.655367200006076]
本研究では,脳波信号の空間依存性と時間スペクトルの相対性を表す分布に基づく不確実性手法を提案する。
グラフ混合手法は、遅延接続エッジを強化し、ノイズラベル問題を緩和するために用いられる。
感情認識タスクにおいて、SEEDとSEEDIVという2つの広く使われているデータセットに対するアプローチを評価した。
論文 参考訳(メタデータ) (2023-10-22T03:47:11Z) - A Knowledge-Driven Cross-view Contrastive Learning for EEG
Representation [48.85731427874065]
本稿では,限られたラベルを持つ脳波から効果的な表現を抽出する知識駆動型クロスビューコントラスト学習フレームワーク(KDC2)を提案する。
KDC2法は脳波信号の頭皮と神経のビューを生成し、脳活動の内部および外部の表現をシミュレートする。
ニューラル情報整合性理論に基づく事前のニューラル知識をモデル化することにより、提案手法は不変かつ相補的なニューラル知識を抽出し、複合表現を生成する。
論文 参考訳(メタデータ) (2023-09-21T08:53:51Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
AAD(Auditory Attention Detection)は、マルチスピーカー環境で脳信号からターゲット話者を検出することを目的としている。
現在のアプローチは主に、画像のようなユークリッドデータを処理するために設計された従来の畳み込みニューラルネットワークに依存している。
本稿では、入力として音声刺激を必要としないAADのための動的グラフ自己蒸留(DGSD)手法を提案する。
論文 参考訳(メタデータ) (2023-09-07T13:43:46Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
多チャンネル脳波データからいくつかの皮質下領域の活性を回復するための解釈可能な領域基底解を提案する。
我々は,皮質下核の血行動態信号の頭皮脳波予測の空間的・時間的パターンを復元する。
論文 参考訳(メタデータ) (2022-10-23T15:11:37Z) - Dynamic Graph Modeling of Simultaneous EEG and Eye-tracking Data for
Reading Task Identification [79.41619843969347]
我々は、脳波(EEG)と眼球運動(EM)データからヒトの読取意図を特定するための新しいアプローチAdaGTCNを提案する。
本稿では,AdaGTCN(Adaptive Graph Temporal Convolution Network)の手法として,Adaptive Graph Learning LayerとDeep Neighborhood Graph Convolution Layerを用いた。
このアプローチといくつかのベースラインを比較し、ZuCo 2.0データセットの6.29%の改善と広範なアブレーション実験を報告します。
論文 参考訳(メタデータ) (2021-02-21T18:19:49Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
教師付き学習パラダイムは、しばしば利用可能なラベル付きデータの量によって制限される。
この現象は脳波(EEG)などの臨床関連データに特に問題となる。
ラベルのないデータから情報を抽出することで、ディープニューラルネットワークとの競合性能に到達することができるかもしれない。
論文 参考訳(メタデータ) (2020-07-31T14:34:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。