SPHERE: Unveiling Spatial Blind Spots in Vision-Language Models Through Hierarchical Evaluation
- URL: http://arxiv.org/abs/2412.12693v3
- Date: Fri, 28 Feb 2025 15:14:37 GMT
- Title: SPHERE: Unveiling Spatial Blind Spots in Vision-Language Models Through Hierarchical Evaluation
- Authors: Wenyu Zhang, Wei En Ng, Lixin Ma, Yuwen Wang, Jungqi Zhao, Allison Koenecke, Boyang Li, Lu Wang,
- Abstract summary: Current vision-language models may grasp basic spatial cues but struggle with the multi-dimensional spatial reasoning necessary for human-like understanding and real-world applications.<n>We develop SPHERE, a hierarchical evaluation framework supported by a new human-annotated dataset.<n> Benchmark evaluation of state-of-the-art models reveals significant deficiencies, especially in reasoning about distance and proximity.
- Score: 7.659514491338669
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current vision-language models may grasp basic spatial cues and simple directions (e.g. left, right, front, back), but struggle with the multi-dimensional spatial reasoning necessary for human-like understanding and real-world applications. To address this gap, we develop SPHERE (Spatial Perception and Hierarchical Evaluation of REasoning), a hierarchical evaluation framework supported by a new human-annotated dataset. SPHERE systematically probes models across increasing levels of complexity, from fundamental skills to multi-skill integration and high-level reasoning that combines spatial, visual, and logical understanding. Benchmark evaluation of state-of-the-art models reveals significant deficiencies, especially in reasoning about distance and proximity, understanding both egocentric and allocentric perspectives, and applying spatial logic in physical contexts. These findings expose critical blind spots in existing models and underscore the need for more advanced spatial reasoning techniques, driving the development of vision-language models that align more closely with human spatial cognition. The SPHERE benchmark is available at https://github.com/zwenyu/SPHERE-VLM.
Related papers
- Embodied-R: Collaborative Framework for Activating Embodied Spatial Reasoning in Foundation Models via Reinforcement Learning [58.86928947970342]
Embodied-R is a framework combining large-scale Vision-Language Models for perception and small-scale Language Models for reasoning.
After training on only 5k embodied video samples, Embodied-R with a 3B LM matches state-of-the-art multimodal reasoning models.
Embodied-R also exhibits emergent thinking patterns such as systematic analysis and contextual integration.
arXiv Detail & Related papers (2025-04-17T06:16:11Z) - Mind the Gap: Benchmarking Spatial Reasoning in Vision-Language Models [14.442394137843923]
We present a detailed analysis that first delineates the core elements of spatial reasoning.
We then assesses the performance of these models in both synthetic and real-world images.
arXiv Detail & Related papers (2025-03-25T14:34:06Z) - Beyond Semantics: Rediscovering Spatial Awareness in Vision-Language Models [10.792834356227118]
Vision-Language Models (VLMs) excel at identifying and describing objects but struggle with spatial reasoning.
Inspired by the dual-pathway (ventral-dorsal) model of human vision, we investigate why VLMs fail spatial tasks despite strong object recognition capabilities.
arXiv Detail & Related papers (2025-03-21T17:51:14Z) - Why Is Spatial Reasoning Hard for VLMs? An Attention Mechanism Perspective on Focus Areas [52.478956204238315]
We study the spatial reasoning challenge from the lens of mechanistic interpretability.
We observe that successful spatial reasoning correlates strongly with the model's ability to align its attention with actual object locations.
Motivated by these findings, we propose ADAPTVIS to sharpen the attention on highly relevant regions when confident.
arXiv Detail & Related papers (2025-03-03T17:57:03Z) - Sparkle: Mastering Basic Spatial Capabilities in Vision Language Models Elicits Generalization to Composite Spatial Reasoning [19.399925987942204]
Vision language models (VLMs) have demonstrated impressive performance across a wide range of downstream tasks.
Our evaluation reveals that state-of-the-art VLMs frequently generate implausible and incorrect responses to composite spatial reasoning problems.
To address this, we explore an effective approach to enhance 2D spatial reasoning within VLMs by training the model solely on basic spatial capabilities.
arXiv Detail & Related papers (2024-10-21T16:26:09Z) - Structured Spatial Reasoning with Open Vocabulary Object Detectors [2.089191490381739]
Reasoning about spatial relationships between objects is essential for many real-world robotic tasks.
We introduce a structured probabilistic approach that integrates rich 3D geometric features with state-of-the-art open-vocabulary object detectors.
The approach is evaluated and compared against zero-shot performance of the state-of-the-art Vision and Language Models (VLMs) on spatial reasoning tasks.
arXiv Detail & Related papers (2024-10-09T19:37:01Z) - Linking Robustness and Generalization: A k* Distribution Analysis of Concept Clustering in Latent Space for Vision Models [56.89974470863207]
This article uses the k* Distribution, a local neighborhood analysis method, to examine the learned latent space at the level of individual concepts.
We introduce skewness-based true and approximate metrics for interpreting individual concepts to assess the overall quality of vision models' latent space.
arXiv Detail & Related papers (2024-08-17T01:43:51Z) - On the Element-Wise Representation and Reasoning in Zero-Shot Image Recognition: A Systematic Survey [82.49623756124357]
Zero-shot image recognition (ZSIR) aims to recognize and reason in unseen domains by learning generalized knowledge from limited data.<n>This paper thoroughly investigates recent advances in element-wise ZSIR and provides a basis for its future development.
arXiv Detail & Related papers (2024-08-09T05:49:21Z) - SpaRC and SpaRP: Spatial Reasoning Characterization and Path Generation for Understanding Spatial Reasoning Capability of Large Language Models [70.01883340129204]
spatial reasoning is a crucial component of both biological and artificial intelligence.
We present a comprehensive study of the capability of current state-of-the-art large language models (LLMs) on spatial reasoning.
arXiv Detail & Related papers (2024-06-07T01:06:34Z) - Reframing Spatial Reasoning Evaluation in Language Models: A Real-World Simulation Benchmark for Qualitative Reasoning [4.422649561583363]
We present a novel benchmark for assessing spatial reasoning in language models (LMs)
It is grounded in realistic 3D simulation data, offering a series of diverse room layouts with various objects and their spatial relationships.
A key contribution is our logic-based consistency-checking tool, which enables the assessment of multiple plausible solutions.
arXiv Detail & Related papers (2024-05-23T21:22:00Z) - Improving Vision-and-Language Reasoning via Spatial Relations Modeling [30.477235227733928]
Visual commonsense reasoning (VCR) is a challenging multi-modal task.
The proposed method can guide the representations to maintain more spatial context.
We achieve the state-of-the-art results on VCR and two other vision-and-language reasoning tasks VQA, and NLVR.
arXiv Detail & Related papers (2023-11-09T11:54:55Z) - Detecting Any Human-Object Interaction Relationship: Universal HOI
Detector with Spatial Prompt Learning on Foundation Models [55.20626448358655]
This study explores the universal interaction recognition in an open-world setting through the use of Vision-Language (VL) foundation models and large language models (LLMs)
Our design includes an HO Prompt-guided Decoder (HOPD), facilitates the association of high-level relation representations in the foundation model with various HO pairs within the image.
For open-category interaction recognition, our method supports either of two input types: interaction phrase or interpretive sentence.
arXiv Detail & Related papers (2023-11-07T08:27:32Z) - Foundational Models Defining a New Era in Vision: A Survey and Outlook [151.49434496615427]
Vision systems to see and reason about the compositional nature of visual scenes are fundamental to understanding our world.
The models learned to bridge the gap between such modalities coupled with large-scale training data facilitate contextual reasoning, generalization, and prompt capabilities at test time.
The output of such models can be modified through human-provided prompts without retraining, e.g., segmenting a particular object by providing a bounding box, having interactive dialogues by asking questions about an image or video scene or manipulating the robot's behavior through language instructions.
arXiv Detail & Related papers (2023-07-25T17:59:18Z) - Visual Superordinate Abstraction for Robust Concept Learning [80.15940996821541]
Concept learning constructs visual representations that are connected to linguistic semantics.
We ascribe the bottleneck to a failure of exploring the intrinsic semantic hierarchy of visual concepts.
We propose a visual superordinate abstraction framework for explicitly modeling semantic-aware visual subspaces.
arXiv Detail & Related papers (2022-05-28T14:27:38Z) - Causal Reasoning Meets Visual Representation Learning: A Prospective
Study [117.08431221482638]
Lack of interpretability, robustness, and out-of-distribution generalization are becoming the challenges of the existing visual models.
Inspired by the strong inference ability of human-level agents, recent years have witnessed great effort in developing causal reasoning paradigms.
This paper aims to provide a comprehensive overview of this emerging field, attract attention, encourage discussions, bring to the forefront the urgency of developing novel causal reasoning methods.
arXiv Detail & Related papers (2022-04-26T02:22:28Z) - Things not Written in Text: Exploring Spatial Commonsense from Visual
Signals [77.46233234061758]
We investigate whether models with visual signals learn more spatial commonsense than text-based models.
We propose a benchmark that focuses on the relative scales of objects, and the positional relationship between people and objects under different actions.
We find that image synthesis models are more capable of learning accurate and consistent spatial knowledge than other models.
arXiv Detail & Related papers (2022-03-15T17:02:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.