論文の概要: Unsupervised UAV 3D Trajectories Estimation with Sparse Point Clouds
- arxiv url: http://arxiv.org/abs/2412.12716v2
- Date: Wed, 18 Dec 2024 04:42:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-19 16:46:02.987517
- Title: Unsupervised UAV 3D Trajectories Estimation with Sparse Point Clouds
- Title(参考訳): スパース点雲を用いた無人UAV3次元軌道推定
- Authors: Hanfang Liang, Yizhuo Yang, Jinming Hu, Jianfei Yang, Fen Liu, Shenghai Yuan,
- Abstract要約: 本稿では,時空間シーケンス処理を用いたコスト効率,教師なしUAV検出手法を提案する。
CVPR 2024 UG2+ Challengeの4位にランクインした。
我々は、研究コミュニティ.com/lianghanfang/UnLiDAR-UAV-Estのすべての設計、コード、サンプルデータをオープンソース化する予定です。
- 参考スコア(独自算出の注目度): 18.48877348628721
- License:
- Abstract: Compact UAV systems, while advancing delivery and surveillance, pose significant security challenges due to their small size, which hinders detection by traditional methods. This paper presents a cost-effective, unsupervised UAV detection method using spatial-temporal sequence processing to fuse multiple LiDAR scans for accurate UAV tracking in real-world scenarios. Our approach segments point clouds into foreground and background, analyzes spatial-temporal data, and employs a scoring mechanism to enhance detection accuracy. Tested on a public dataset, our solution placed 4th in the CVPR 2024 UG2+ Challenge, demonstrating its practical effectiveness. We plan to open-source all designs, code, and sample data for the research community github.com/lianghanfang/UnLiDAR-UAV-Est.
- Abstract(参考訳): 小型のUAVシステムは、配送と監視を進める一方で、小型化によってセキュリティ上の重大な課題を生じさせ、従来の方法による検出を妨げている。
本稿では,複数のLiDARスキャンを融合して現実のシナリオにおける高精度なUAV追跡を行うために,空間時間シーケンス処理を用いたコスト効率のよい無人UAV検出手法を提案する。
我々のアプローチでは、雲を前景と背景に向け、時空間データを解析し、検出精度を高めるためのスコアリング機構を採用している。
公開データセットでテストした結果,CVPR 2024 UG2+ Challengeの4位にランクインし,その実用性を実証した。
我々は,研究コミュニティgithub.com/lianghanfang/UnLiDAR-UAV-Estのすべての設計,コード,サンプルデータをオープンソース化する予定です。
関連論文リスト
- SFTrack: A Robust Scale and Motion Adaptive Algorithm for Tracking Small and Fast Moving Objects [2.9803250365852443]
本稿では,無人航空機(UAV)映像における多物体追跡の問題に対処する。
交通監視システムや警察によるリアルタイム容疑者追跡など、様々なUAVアプリケーションにおいて重要な役割を果たしている。
低信頼度検出から対象物体の追跡を開始する新しい追跡戦略を提案する。
論文 参考訳(メタデータ) (2024-10-26T05:09:20Z) - UAVDB: Trajectory-Guided Adaptable Bounding Boxes for UAV Detection [0.03464344220266879]
パッチ強度収束(Patch Intensity Convergence、PIC)技術は、手動ラベリングなしでUAV検出のための高忠実なバウンディングボックスを生成する。
この技術は、UAV検出に特化した専用データベースであるUAVDBの基礎となる。
我々は,最先端(SOTA)YOLO系列検出器を用いてUAVDBをベンチマークし,総合的な性能解析を行った。
論文 参考訳(メタデータ) (2024-09-09T13:27:53Z) - Clustering-based Learning for UAV Tracking and Pose Estimation [0.0]
本研究は,UAV追跡と2種類のLiDARを用いたポーズ推定のためのクラスタリングに基づく学習検出手法であるCL-Detを開発する。
まず、Livox AviaデータとLiDAR 360データのタイムスタンプを調整し、その後、関心のあるオブジェクト(OOI)のポイントクラウドを環境から分離します。
提案手法は,CVPR 2024 UG2+ Challengeの最終リーダーボードにおいて,競争力のあるポーズ推定性能を示し,第5位にランクインする。
論文 参考訳(メタデータ) (2024-05-27T06:33:25Z) - Multi-Modal UAV Detection, Classification and Tracking Algorithm -- Technical Report for CVPR 2024 UG2 Challenge [20.459377705070043]
本報告では, CVPR 2024 UAV追跡・姿勢推定チャレンジにおける課題であるUG2+の初当選モデルについて述べる。
高精度なUAV分類・追跡のためのマルチモーダルなUAV検出・分類・3次元追跡手法を提案する。
本システムでは,最先端の分類手法と高度な後処理手順を統合し,精度と堅牢性を向上する。
論文 参考訳(メタデータ) (2024-05-26T07:21:18Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - Fully Convolutional One-Stage 3D Object Detection on LiDAR Range Images [96.66271207089096]
FCOS-LiDARは、自律走行シーンのLiDAR点雲のための完全な1段式3Dオブジェクト検出器である。
標準的な2Dコンボリューションを持つRVベースの3D検出器は、最先端のBEVベースの検出器と同等の性能を発揮することを示す。
論文 参考訳(メタデータ) (2022-05-27T05:42:16Z) - Vision-based Anti-UAV Detection and Tracking [18.307952561941942]
無人航空機(UAV)は様々な分野で広く使われており、セキュリティやプライバシーへの侵入が社会の関心を喚起している。
本稿では,ダリアン工科大学アンチUAVデータセット,DUTアンチUAVという可視光モードデータセットを提案する。
検出データセットには、合計1万の画像と、短期および長期のシーケンスを含む20のビデオの追跡データセットが含まれている。
論文 参考訳(メタデータ) (2022-05-22T15:21:45Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
識別オートエンコーダ(DAE)と呼ばれる新しい異常検出モデルを提案する。
通常のLSTMベースのオートエンコーダのベースラインを使用するが、いくつかのデコーダがあり、それぞれ特定の飛行フェーズのデータを取得する。
その結果,DAEは精度と検出速度の両方で良好な結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-08T14:07:55Z) - Trajectory Design for UAV-Based Internet-of-Things Data Collection: A
Deep Reinforcement Learning Approach [93.67588414950656]
本稿では,無人航空機(UAV)による3D環境におけるIoT(Internet-of-Things)システムについて検討する。
本稿では,TD3-TDCTMアルゴリズムの完成時間最小化のためのトラジェクトリ設計を提案する。
シミュレーションの結果,従来の3つの非学習ベースライン法よりもTD3-TDCTMアルゴリズムの方が優れていることが示された。
論文 参考訳(メタデータ) (2021-07-23T03:33:29Z) - Anti-UAV: A Large Multi-Modal Benchmark for UAV Tracking [59.06167734555191]
Unmanned Aerial Vehicle (UAV)は、商業とレクリエーションの両方に多くの応用を提供している。
我々は、UAVを追跡し、位置や軌道などの豊富な情報を提供するという課題を考察する。
300以上のビデオペアが580k以上の手動で注釈付きバウンディングボックスを含むデータセット、Anti-UAVを提案します。
論文 参考訳(メタデータ) (2021-01-21T07:00:15Z) - Perceiving Traffic from Aerial Images [86.994032967469]
本研究では,空中画像中の物体を検出するために,バタフライ検出器と呼ばれる物体検出手法を提案する。
UAVDT(UAVDT)とVisDrone 2019(VisDrone 2019)の2つのUAVデータセット上でButterfly Detectorを評価し、従来の最先端の手法よりも高速に動作し、かつリアルタイムに動作可能であることを示す。
論文 参考訳(メタデータ) (2020-09-16T11:37:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。