Comparing Optical Flow and Deep Learning to Enable Computationally Efficient Traffic Event Detection with Space-Filling Curves
- URL: http://arxiv.org/abs/2408.00768v1
- Date: Mon, 15 Jul 2024 13:44:52 GMT
- Title: Comparing Optical Flow and Deep Learning to Enable Computationally Efficient Traffic Event Detection with Space-Filling Curves
- Authors: Tayssir Bouraffa, Elias Kjellberg Carlson, Erik Wessman, Ali Nouri, Pierre Lamart, Christian Berger,
- Abstract summary: We compare Optical Flow (OF) and Deep Learning (DL) to feed computationally efficient event detection via space-filling curves on video data from a forward-facing, in-vehicle camera.
Our results yield that the OF approach excels in specificity and reduces false positives, while the DL approach demonstrates superior sensitivity.
- Score: 0.6322312717516407
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gathering data and identifying events in various traffic situations remains an essential challenge for the systematic evaluation of a perception system's performance. Analyzing large-scale, typically unstructured, multi-modal, time series data obtained from video, radar, and LiDAR is computationally demanding, particularly when meta-information or annotations are missing. We compare Optical Flow (OF) and Deep Learning (DL) to feed computationally efficient event detection via space-filling curves on video data from a forward-facing, in-vehicle camera. Our first approach leverages unexpected disturbances in the OF field from vehicle surroundings; the second approach is a DL model trained on human visual attention to predict a driver's gaze to spot potential event locations. We feed these results to a space-filling curve to reduce dimensionality and achieve computationally efficient event retrieval. We systematically evaluate our concept by obtaining characteristic patterns for both approaches from a large-scale virtual dataset (SMIRK) and applied our findings to the Zenseact Open Dataset (ZOD), a large multi-modal, real-world dataset, collected over two years in 14 different European countries. Our results yield that the OF approach excels in specificity and reduces false positives, while the DL approach demonstrates superior sensitivity. Both approaches offer comparable processing speed, making them suitable for real-time applications.
Related papers
- SPADES: A Realistic Spacecraft Pose Estimation Dataset using Event
Sensing [9.583223655096077]
Due to limited access to real target datasets, algorithms are often trained using synthetic data and applied in the real domain.
Event sensing has been explored in the past and shown to reduce the domain gap between simulations and real-world scenarios.
We introduce a novel dataset, SPADES, comprising real event data acquired in a controlled laboratory environment and simulated event data using the same camera intrinsics.
arXiv Detail & Related papers (2023-11-09T12:14:47Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Dual Memory Aggregation Network for Event-Based Object Detection with
Learnable Representation [79.02808071245634]
Event-based cameras are bio-inspired sensors that capture brightness change of every pixel in an asynchronous manner.
Event streams are divided into grids in the x-y-t coordinates for both positive and negative polarity, producing a set of pillars as 3D tensor representation.
Long memory is encoded in the hidden state of adaptive convLSTMs while short memory is modeled by computing spatial-temporal correlation between event pillars.
arXiv Detail & Related papers (2023-03-17T12:12:41Z) - Real-Time Driver Monitoring Systems through Modality and View Analysis [28.18784311981388]
Driver distractions are known to be the dominant cause of road accidents.
State-of-the-art methods prioritize accuracy while ignoring latency.
We propose time-effective detection models by neglecting the temporal relation between video frames.
arXiv Detail & Related papers (2022-10-17T21:22:41Z) - Towards Scale Consistent Monocular Visual Odometry by Learning from the
Virtual World [83.36195426897768]
We propose VRVO, a novel framework for retrieving the absolute scale from virtual data.
We first train a scale-aware disparity network using both monocular real images and stereo virtual data.
The resulting scale-consistent disparities are then integrated with a direct VO system.
arXiv Detail & Related papers (2022-03-11T01:51:54Z) - An Efficient Approach for Anomaly Detection in Traffic Videos [30.83924581439373]
We propose an efficient approach for a video anomaly detection system which is capable of running at the edge devices.
The proposed approach comprises a pre-processing module that detects changes in the scene and removes the corrupted frames.
We also propose a sequential change detection algorithm that can quickly adapt to a new scene and detect changes in the similarity statistic.
arXiv Detail & Related papers (2021-04-20T04:43:18Z) - Physics-Informed Deep Learning for Traffic State Estimation [3.779860024918729]
Traffic state estimation (TSE) reconstructs the traffic variables (e.g., density) on road segments using partially observed data.
This paper introduces a physics-informed deep learning (PIDL) framework to efficiently conduct high-quality TSE with small amounts of observed data.
arXiv Detail & Related papers (2021-01-17T03:28:32Z) - Provably Efficient Causal Reinforcement Learning with Confounded
Observational Data [135.64775986546505]
We study how to incorporate the dataset (observational data) collected offline, which is often abundantly available in practice, to improve the sample efficiency in the online setting.
We propose the deconfounded optimistic value iteration (DOVI) algorithm, which incorporates the confounded observational data in a provably efficient manner.
arXiv Detail & Related papers (2020-06-22T14:49:33Z) - End-to-end Learning for Inter-Vehicle Distance and Relative Velocity
Estimation in ADAS with a Monocular Camera [81.66569124029313]
We propose a camera-based inter-vehicle distance and relative velocity estimation method based on end-to-end training of a deep neural network.
The key novelty of our method is the integration of multiple visual clues provided by any two time-consecutive monocular frames.
We also propose a vehicle-centric sampling mechanism to alleviate the effect of perspective distortion in the motion field.
arXiv Detail & Related papers (2020-06-07T08:18:31Z) - Training-free Monocular 3D Event Detection System for Traffic
Surveillance [93.65240041833319]
Existing event detection systems are mostly learning-based and have achieved convincing performance when a large amount of training data is available.
In real-world scenarios, collecting sufficient labeled training data is expensive and sometimes impossible.
We propose a training-free monocular 3D event detection system for traffic surveillance.
arXiv Detail & Related papers (2020-02-01T04:42:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.