A Distributed Acoustic Sensor System for Intelligent Transportation
using Deep Learning
- URL: http://arxiv.org/abs/2209.05978v1
- Date: Tue, 13 Sep 2022 13:23:30 GMT
- Title: A Distributed Acoustic Sensor System for Intelligent Transportation
using Deep Learning
- Authors: Chia-Yen Chiang, Mona Jaber, and Peter Hayward
- Abstract summary: This work explores a novel data source based on optical fibre-based distributed acoustic sensors (DAS) for traffic analysis.
We propose a deep learning technique to analyse DAS signals to address this challenge through continuous sensing and without exposing personal information.
We achieve 92% vehicle classification accuracy and 92%-97% in occupancy detection based on DAS data collected under controlled conditions.
- Score: 2.1219631216034127
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Intelligent transport systems (ITS) are pivotal in the development of
sustainable and green urban living. ITS is data-driven and enabled by the
profusion of sensors ranging from pneumatic tubes to smart cameras. This work
explores a novel data source based on optical fibre-based distributed acoustic
sensors (DAS) for traffic analysis. Detecting the type of vehicle and
estimating the occupancy of vehicles are prime concerns in ITS. The first is
motivated by the need for tracking, controlling, and forecasting traffic flow.
The second targets the regulation of high occupancy vehicle lanes in an attempt
to reduce emissions and congestion. These tasks are often conducted by
individuals inspecting vehicles or through the use of emerging computer vision
technologies. The former is not scale-able nor efficient whereas the latter is
intrusive to passengers' privacy. To this end, we propose a deep learning
technique to analyse DAS signals to address this challenge through continuous
sensing and without exposing personal information. We propose a deep learning
method for processing DAS signals and achieve 92% vehicle classification
accuracy and 92-97% in occupancy detection based on DAS data collected under
controlled conditions.
Related papers
- Passenger hazard perception based on EEG signals for highly automated driving vehicles [23.322910031715583]
This study explores neural mechanisms in passenger-vehicle interactions, leading to the development of a Passenger Cognitive Model (PCM) and the Passenger EEG Decoding Strategy (PEDS)
Central to PEDS is a novel Convolutional Recurrent Neural Network (CRNN) that captures spatial and temporal EEG data patterns.
Our findings highlight the predictive power of pre-event EEG data, enhancing the detection of hazardous scenarios and offering a network-driven framework for safer autonomous vehicles.
arXiv Detail & Related papers (2024-08-29T07:32:30Z) - OOSTraj: Out-of-Sight Trajectory Prediction With Vision-Positioning Denoising [49.86409475232849]
Trajectory prediction is fundamental in computer vision and autonomous driving.
Existing approaches in this field often assume precise and complete observational data.
We present a novel method for out-of-sight trajectory prediction that leverages a vision-positioning technique.
arXiv Detail & Related papers (2024-04-02T18:30:29Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
Smoke and dust affect the performance of any mobile robotic platform due to their reliance on onboard perception systems.
This paper proposes a novel modular computation filtration pipeline based on intensity and spatial information.
arXiv Detail & Related papers (2023-08-14T16:48:57Z) - Smart Infrastructure: A Research Junction [5.172393727004225]
We introduce an intelligent research infrastructure equipped with visual sensor technology, located at a public inner-city junction in Aschaffenburg, Germany.
A multiple-view camera system monitors the traffic situation to perceive road users' behavior.
The system is used for research in data generation, evaluating new HAD sensors systems, algorithms, and Artificial Intelligence (AI) training strategies.
arXiv Detail & Related papers (2023-07-12T14:04:12Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
This work aims to carry out a study on the current scenario of camera and radar-based perception for ADAS and autonomous vehicles.
Concepts and characteristics related to both sensors, as well as to their fusion, are presented.
We give an overview of the Deep Learning-based detection and segmentation tasks, and the main datasets, metrics, challenges, and open questions in vehicle perception.
arXiv Detail & Related papers (2023-03-08T00:48:32Z) - Efficient Federated Learning with Spike Neural Networks for Traffic Sign
Recognition [70.306089187104]
We introduce powerful Spike Neural Networks (SNNs) into traffic sign recognition for energy-efficient and fast model training.
Numerical results indicate that the proposed federated SNN outperforms traditional federated convolutional neural networks in terms of accuracy, noise immunity, and energy efficiency as well.
arXiv Detail & Related papers (2022-05-28T03:11:48Z) - A Hybrid Physics Machine Learning Approach for Macroscopic Traffic State
Estimation [20.716261308570555]
This paper introduces an innovative traffic state estimation framework.
It uses limited information from traffic sensors as inputs to construct accurate and full-field estimated traffic state.
Experimental results show that the proposed method has been proved to estimate full-field traffic information accurately.
arXiv Detail & Related papers (2022-02-01T06:04:18Z) - Automated Object Behavioral Feature Extraction for Potential Risk
Analysis based on Video Sensor [6.291501119156943]
Pedestrians are exposed to risk of death or serious injuries on roads, especially unsignalized crosswalks.
We propose an automated and simpler system for effectively extracting object behavioral features from video sensors deployed on the road.
This study demonstrates the potential for a network of connected video sensors to provide actionable data for smart cities.
arXiv Detail & Related papers (2021-07-08T01:11:31Z) - Efficient and Robust LiDAR-Based End-to-End Navigation [132.52661670308606]
We present an efficient and robust LiDAR-based end-to-end navigation framework.
We propose Fast-LiDARNet that is based on sparse convolution kernel optimization and hardware-aware model design.
We then propose Hybrid Evidential Fusion that directly estimates the uncertainty of the prediction from only a single forward pass.
arXiv Detail & Related papers (2021-05-20T17:52:37Z) - Cooperative Perception with Deep Reinforcement Learning for Connected
Vehicles [7.7003495898919265]
We present a cooperative perception scheme with deep reinforcement learning to enhance the detection accuracy for the surrounding objects.
Our scheme mitigates the network load in vehicular communication networks and enhances the communication reliability.
arXiv Detail & Related papers (2020-04-23T01:44:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.