論文の概要: Versatile Ordering Network: An Attention-based Neural Network for Ordering Across Scales and Quality Metrics
- arxiv url: http://arxiv.org/abs/2412.12759v2
- Date: Wed, 18 Dec 2024 09:34:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-19 13:24:59.698904
- Title: Versatile Ordering Network: An Attention-based Neural Network for Ordering Across Scales and Quality Metrics
- Title(参考訳): Versatile Ordering Network: スケールと品質メトリクスの順序付けのための注意に基づくニューラルネットワーク
- Authors: Zehua Yu, Weihan Zhang, Sihan Pan, Jun Tao,
- Abstract要約: 本稿では,品質基準を付与する戦略を自動的に学習するVersatile Ordering Network (VON)を提案する。
VONは、そのソリューションを評価するために品質測定値を使用し、強化学習をエレデートなロールアウトベースラインで活用して、自分自身を改善する。
この結果から, VONは特殊解法に匹敵する結果が得られることが示された。
- 参考スコア(独自算出の注目度): 2.8298356822359407
- License:
- Abstract: Ordering has been extensively studied in many visualization applications, such as axis and matrix reordering, for the simple reason that the order will greatly impact the perceived pattern of data. Many quality metrics concerning data pattern, perception, and aesthetics are proposed, and respective optimization algorithms are developed. However, the optimization problems related to ordering are often difficult to solve (e.g., TSP is NP-complete), and developing specialized optimization algorithms is costly. In this paper, we propose Versatile Ordering Network (VON), which automatically learns the strategy to order given a quality metric. VON uses the quality metric to evaluate its solutions, and leverages reinforcement learning with a greedy rollout baseline to improve itself. This keeps the metric transparent and allows VON to optimize over different metrics. Additionally, VON uses the attention mechanism to collect information across scales and reposition the data points with respect to the current context. This allows VONs to deal with data points following different distributions. We examine the effectiveness of VON under different usage scenarios and metrics. The results demonstrate that VON can produce comparable results to specialized solvers. The code is available at https://github.com/sysuvis/VON.
- Abstract(参考訳): 順序付けは、その順序が知覚されたデータのパターンに大きな影響を与えるという単純な理由から、軸や行列の順序付けなどの多くの可視化アプリケーションで広く研究されている。
データパターン、知覚、美学に関する多くの品質指標が提案され、それぞれの最適化アルゴリズムが開発された。
しかし、順序付けに関連する最適化問題はしばしば解決が困難であり(例えば、TSPはNP完全)、特殊な最適化アルゴリズムの開発にはコストがかかる。
本稿では,品質基準を付与した注文戦略を自動的に学習するVersatile Ordering Network (VON)を提案する。
VONは、そのソリューションを評価するために品質測定値を使用し、強化学習をエレデートなロールアウトベースラインで活用して、自分自身を改善する。
これにより、メトリクスを透過的に保ち、VONがさまざまなメトリクスを最適化することが可能になる。
さらに、VONはアテンションメカニズムを使用して、スケールにまたがる情報を収集し、現在のコンテキストに関するデータポイントを再配置する。
これにより、VONは異なる分布に従うデータポイントを扱うことができる。
異なる利用シナリオと測定基準下でのVONの有効性について検討する。
この結果から, VONは特殊解法に匹敵する結果が得られることが示された。
コードはhttps://github.com/sysuvis/VON.comで公開されている。
関連論文リスト
- Adaptive Neural Ranking Framework: Toward Maximized Business Goal for
Cascade Ranking Systems [33.46891569350896]
カスケードランキングは、オンライン広告とレコメンデーションシステムにおける大規模なトップk選択問題に広く使われている。
それまでの学習からランクへの取り組みは、モデルに完全な順序やトップクオーダを学習させることに重点を置いていた。
我々はこの手法をアダプティブ・ニューラルランキング・フレームワーク (Adaptive Neural Ranking Framework, ARF) と命名する。
論文 参考訳(メタデータ) (2023-10-16T14:43:02Z) - Online Network Source Optimization with Graph-Kernel MAB [62.6067511147939]
大規模ネットワークにおける最適なソース配置をオンラインで学習するためのグラフカーネルマルチアームバンディットアルゴリズムであるGrab-UCBを提案する。
適応グラフ辞書モデルを用いて,ネットワークプロセスを記述する。
我々は、ネットワークパラメータに依存する性能保証を導出し、シーケンシャルな意思決定戦略の学習曲線にさらに影響を及ぼす。
論文 参考訳(メタデータ) (2023-07-07T15:03:42Z) - Performance Embeddings: A Similarity-based Approach to Automatic
Performance Optimization [71.69092462147292]
パフォーマンス埋め込みは、アプリケーション間でパフォーマンスチューニングの知識伝達を可能にする。
本研究では, 深層ニューラルネットワーク, 密度およびスパース線形代数合成, および数値風速予測ステンシルのケーススタディにおいて, この伝達チューニング手法を実証する。
論文 参考訳(メタデータ) (2023-03-14T15:51:35Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
非パラメトリックストリーミング設定のためのニューラルネットワーク(NN)ベースの能動学習アルゴリズムの理論的および経験的性能を改善する。
本研究では,SOTA(State-of-the-art (State-the-art)) 関連研究で使用されるものよりも,アクティブラーニングに適する人口減少を最小化することにより,2つの後悔の指標を導入する。
論文 参考訳(メタデータ) (2022-10-02T05:03:38Z) - A Differentiable Approach to Combinatorial Optimization using Dataless
Neural Networks [20.170140039052455]
我々は、ソリューションを生成するニューラルネットワークのトレーニングにデータを必要としないという、根本的に異なるアプローチを提案する。
特に、最適化問題をニューラルネットワークに還元し、データレストレーニングスキームを用いて、それらのパラメータが関心の構造をもたらすように、ネットワークのパラメータを洗練する。
論文 参考訳(メタデータ) (2022-03-15T19:21:31Z) - GLAN: A Graph-based Linear Assignment Network [29.788755291070462]
深層グラフネットワークに基づく学習可能な線形代入問題の解法を提案する。
合成データセットによる実験結果から,本手法は最先端のベースラインよりも優れていることがわかった。
また,提案手法を一般的なマルチオブジェクトトラッキング(MOT)フレームワークに組み込んで,エンド・ツー・エンドでトラッカーをトレーニングする。
論文 参考訳(メタデータ) (2022-01-05T13:18:02Z) - A Graph Attention Learning Approach to Antenna Tilt Optimization [1.8024332526232831]
6Gはモバイルネットワークを複雑さのレベルに引き上げる。
この複雑さに対処するため、ネットワークパラメータの最適化は、動的ネットワーク環境に対する高い性能とタイムリーな適応性を保証する鍵となる。
傾き最適化のためのグラフ注意Q-ラーニング(GAQ)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-12-27T15:20:53Z) - A Sparse Structure Learning Algorithm for Bayesian Network
Identification from Discrete High-Dimensional Data [0.40611352512781856]
本稿では,高次元離散データから疎構造ベイズネットワークを学習する問題に対処する。
本稿では,空間特性とDAG特性を同時に満足するスコア関数を提案する。
具体的には,アルゴリズムを高次元データで効率的に動作させるため,最適化アルゴリズムに分散低減法を用いる。
論文 参考訳(メタデータ) (2021-08-21T12:21:01Z) - Auto-weighted Multi-view Feature Selection with Graph Optimization [90.26124046530319]
グラフ学習に基づく新しい教師なしマルチビュー特徴選択モデルを提案する。
1) 特徴選択過程において, 異なる視点で共有されたコンセンサス類似度グラフが学習される。
各種データセットを用いた実験により,提案手法が最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-04-11T03:25:25Z) - MOPS-Net: A Matrix Optimization-driven Network forTask-Oriented 3D Point
Cloud Downsampling [86.42733428762513]
MOPS-Netは行列最適化のための新しい解釈可能な深層学習手法である。
我々はMOPS-Netが様々なタスクに対して最先端の深層学習手法に対して好適な性能が得られることを示す。
論文 参考訳(メタデータ) (2020-05-01T14:01:53Z) - Discovering Representations for Black-box Optimization [73.59962178534361]
ブラックボックス最適化符号化は手作業で行うのではなく,自動的に学習可能であることを示す。
学習された表現は、標準的なMAP-Elitesよりも桁違いに少ない評価で高次元の問題を解くことができることを示す。
論文 参考訳(メタデータ) (2020-03-09T20:06:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。