論文の概要: HyperGS: Hyperspectral 3D Gaussian Splatting
- arxiv url: http://arxiv.org/abs/2412.12849v1
- Date: Tue, 17 Dec 2024 12:23:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-18 13:58:31.734244
- Title: HyperGS: Hyperspectral 3D Gaussian Splatting
- Title(参考訳): HyperGS:Hyperspectral 3D Gaussian Splatting
- Authors: Christopher Thirgood, Oscar Mendez, Erin Chao Ling, Jon Storey, Simon Hadfield,
- Abstract要約: ハイパースペクトルノベルビュー合成(HNVS)のための新しいフレームワークであるHyperGSを紹介する。
提案手法は,多視点3次元ハイパースペクトルデータセットから材料特性を符号化することで,空間・スペクトルの同時レンダリングを可能にする。
これまでに公表されたモデルに対して14dbの精度向上を図り、実・模擬ハイパースペクトルシーンを広範囲に評価することで、HyperGSのロバスト性を実証する。
- 参考スコア(独自算出の注目度): 13.07553815605148
- License:
- Abstract: We introduce HyperGS, a novel framework for Hyperspectral Novel View Synthesis (HNVS), based on a new latent 3D Gaussian Splatting (3DGS) technique. Our approach enables simultaneous spatial and spectral renderings by encoding material properties from multi-view 3D hyperspectral datasets. HyperGS reconstructs high-fidelity views from arbitrary perspectives with improved accuracy and speed, outperforming currently existing methods. To address the challenges of high-dimensional data, we perform view synthesis in a learned latent space, incorporating a pixel-wise adaptive density function and a pruning technique for increased training stability and efficiency. Additionally, we introduce the first HNVS benchmark, implementing a number of new baselines based on recent SOTA RGB-NVS techniques, alongside the small number of prior works on HNVS. We demonstrate HyperGS's robustness through extensive evaluation of real and simulated hyperspectral scenes with a 14db accuracy improvement upon previously published models.
- Abstract(参考訳): 本稿では,ハイパースペクトルノベルビュー合成(HNVS)のための新しいフレームワークであるHyperGSを紹介する。
提案手法は,多視点3次元ハイパースペクトルデータセットから材料特性を符号化することで,空間・スペクトルの同時レンダリングを可能にする。
HyperGSは、任意の視点から高忠実度ビューを再構築し、精度とスピードを改善し、現在ある方法よりも優れています。
高次元データの課題に対処するため、我々は、学習した潜在空間におけるビュー合成を行い、画素ワイド適応密度関数と、訓練安定性と効率を高めるためのプルーニング手法を取り入れた。
さらに,最近のSOTA RGB-NVS技術に基づく多数の新しいベースラインを実装したHNVSベンチマークも導入した。
これまでに公表されたモデルに対して14dbの精度向上を図り、実・模擬ハイパースペクトルシーンを広範囲に評価することで、HyperGSのロバスト性を実証する。
関連論文リスト
- G2SDF: Surface Reconstruction from Explicit Gaussians with Implicit SDFs [84.07233691641193]
G2SDFはニューラル暗黙の符号付き距離場をガウススプラッティングフレームワークに統合する新しいアプローチである。
G2SDFは, 3DGSの効率を維持しつつ, 従来よりも優れた品質を実現する。
論文 参考訳(メタデータ) (2024-11-25T20:07:07Z) - Beyond Gaussians: Fast and High-Fidelity 3D Splatting with Linear Kernels [51.08794269211701]
本稿では,ガウスカーネルを線形カーネルに置き換えて,よりシャープで高精度な結果を得る3Dリニアスティング(DLS)を提案する。
3DLSは、最先端の忠実さと正確さを示し、ベースライン3DGSよりも30%のFPS改善を実現している。
論文 参考訳(メタデータ) (2024-11-19T11:59:54Z) - PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3platは、設計選択を検証した包括的なアブレーション研究によってサポートされた、すべてのベンチマークに新しい最先端を設定します。
本フレームワークは,3DGSの高速,スケーラビリティ,高品質な3D再構成とビュー合成機能を活用している。
論文 参考訳(メタデータ) (2024-10-29T15:28:15Z) - Implicit Gaussian Splatting with Efficient Multi-Level Tri-Plane Representation [45.582869951581785]
Implicit Gaussian Splatting (IGS)は、明示的なポイントクラウドと暗黙的な機能埋め込みを統合する革新的なハイブリッドモデルである。
本稿では,空間正規化を具体化したレベルベースプログレッシブトレーニング手法を提案する。
我々のアルゴリズムは、数MBしか使用せず、ストレージ効率とレンダリング忠実さを効果的にバランスして、高品質なレンダリングを実現することができる。
論文 参考訳(メタデータ) (2024-08-19T14:34:17Z) - 3DGS.zip: A survey on 3D Gaussian Splatting Compression Methods [10.122120872952296]
3次元ガウス散乱(3DGS)は実時間放射場レンダリングの最先端技術として登場している。
レンダリング速度と画像の忠実さの利点にもかかわらず、3DGSはその大きなストレージとメモリ要求によって制限されている。
本調査では3DGSをより効率的にするために開発された圧縮・圧縮技術について詳細に検討する。
論文 参考訳(メタデータ) (2024-06-17T11:43:38Z) - SAGS: Structure-Aware 3D Gaussian Splatting [53.6730827668389]
本研究では,シーンの形状を暗黙的に符号化する構造認識型ガウス散乱法(SAGS)を提案する。
SAGSは、最先端のレンダリング性能と、ベンチマークノベルビュー合成データセットのストレージ要件の削減を反映している。
論文 参考訳(メタデータ) (2024-04-29T23:26:30Z) - GaussianPro: 3D Gaussian Splatting with Progressive Propagation [49.918797726059545]
3DGSはStructure-from-Motion (SfM)技術によって生成されるポイントクラウドに大きく依存している。
本稿では, 3次元ガウスの密度化を導くために, プログレッシブ・プログレッシブ・プログレッシブ・ストラテジーを適用した新しい手法を提案する。
提案手法はデータセット上の3DGSを大幅に上回り,PSNRでは1.15dBの改善が見られた。
論文 参考訳(メタデータ) (2024-02-22T16:00:20Z) - FSGS: Real-Time Few-shot View Synthesis using Gaussian Splatting [58.41056963451056]
本稿では,3次元ガウススプラッティングに基づく数ショットビュー合成フレームワークを提案する。
このフレームワークは3つのトレーニングビューでリアルタイムおよびフォトリアリスティックなビュー合成を可能にする。
FSGSは、さまざまなデータセットの精度とレンダリング効率の両方で最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-12-01T09:30:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。