論文の概要: Automatic Left Ventricular Cavity Segmentation via Deep Spatial Sequential Network in 4D Computed Tomography Studies
- arxiv url: http://arxiv.org/abs/2412.12853v1
- Date: Tue, 17 Dec 2024 12:29:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-18 13:57:30.249259
- Title: Automatic Left Ventricular Cavity Segmentation via Deep Spatial Sequential Network in 4D Computed Tomography Studies
- Title(参考訳): 4次元CT研究における深部空間連続ネットワークによる左室空洞自動分離
- Authors: Yuyu Guo, Lei Bi, Zhengbin Zhu, David Dagan Feng, Ruiyan Zhang, Qian Wang, Jinman Kim,
- Abstract要約: 心電図を自動分割する新しい手法を提案する。
空間シーケンシャル(SS)ネットワークを導入し,LVCの変形特性と運動特性を教師なしで学習する。
心電図(CT)データセットを用いて,双方向学習法(SS-BL)を用いたネットワークが従来のLCVセグメンテーション法より優れていたことを実証した。
- 参考スコア(独自算出の注目度): 20.358413194053103
- License:
- Abstract: Automated segmentation of left ventricular cavity (LVC) in temporal cardiac image sequences (multiple time points) is a fundamental requirement for quantitative analysis of its structural and functional changes. Deep learning based methods for the segmentation of LVC are the state of the art; however, these methods are generally formulated to work on single time points, and fails to exploit the complementary information from the temporal image sequences that can aid in segmentation accuracy and consistency among the images across the time points. Furthermore, these segmentation methods perform poorly in segmenting the end-systole (ES) phase images, where the left ventricle deforms to the smallest irregular shape, and the boundary between the blood chamber and myocardium becomes inconspicuous. To overcome these limitations, we propose a new method to automatically segment temporal cardiac images where we introduce a spatial sequential (SS) network to learn the deformation and motion characteristics of the LVC in an unsupervised manner; these characteristics were then integrated with sequential context information derived from bi-directional learning (BL) where both chronological and reverse-chronological directions of the image sequence were used. Our experimental results on a cardiac computed tomography (CT) dataset demonstrated that our spatial-sequential network with bi-directional learning (SS-BL) method outperformed existing methods for LVC segmentation. Our method was also applied to MRI cardiac dataset and the results demonstrated the generalizability of our method.
- Abstract(参考訳): 心電図における左室空洞(LVC)の自動分画は、その構造的および機能的変化を定量的に解析するための基本的な要件である。
深層学習に基づくLVCのセグメンテーションの手法は最先端の手法であるが、これらの手法は一般に単一のタイムポイントで機能するように定式化されており、時間ポイントをまたいだ画像間のセグメンテーションの精度と一貫性を補助する時間画像シーケンスからの補完的な情報を利用することができない。
これらのセグメンテーション法は、左心室が最小の不規則な形状に変形し、血液室と心筋の境界が目立たなくなる、エンドシストール(ES)位相像のセグメンテーションに不適である。
これらの制約を克服するために,空間的逐次(SS)ネットワークを導入してLVCの変形と運動特性を教師なしで学習する時空間心画像の自動分割手法を提案し,その特徴を,画像シーケンスの時間的方向と逆時間的方向の両方を用いた双方向学習(BL)から得られた逐次的コンテキスト情報と統合した。
心電図(CT)データセットを用いた実験の結果,2方向学習法(SS-BL)を用いた空間系列ネットワークは,従来のLVCセグメンテーション法よりも優れていた。
また,MRIの心的データセットにも適用し,本手法の一般化性を実証した。
関連論文リスト
- Real-time guidewire tracking and segmentation in intraoperative x-ray [52.51797358201872]
リアルタイムガイドワイヤ分割と追跡のための2段階のディープラーニングフレームワークを提案する。
第1段階では、ヨロフ5検出器が元のX線画像と合成画像を使って訓練され、ターゲットのガイドワイヤのバウンディングボックスを出力する。
第2段階では、検出された各バウンディングボックスにガイドワイヤを分割するために、新規で効率的なネットワークが提案されている。
論文 参考訳(メタデータ) (2024-04-12T20:39:19Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
医用画像のセグメンテーションはコンピュータ支援診断において重要な役割を担っている。
半教師型医用画像(DEC-Seg)のための新しいDual-scale Enhanced and Cross-generative consistency learning frameworkを提案する。
論文 参考訳(メタデータ) (2023-12-26T12:56:31Z) - Semantic-aware Temporal Channel-wise Attention for Cardiac Function
Assessment [69.02116920364311]
既存のビデオベースの手法では、左室領域や運動による左室の変化にはあまり注意を払わない。
本稿では,左室分割課題を伴う半教師付き補助学習パラダイムを提案し,左室領域の表現学習に寄与する。
提案手法は,0.22 MAE,0.26 RMSE,1.9%$R2$の改善により,スタンフォードデータセットの最先端性能を実現する。
論文 参考訳(メタデータ) (2023-10-09T05:57:01Z) - SimLVSeg: Simplifying Left Ventricular Segmentation in 2D+Time Echocardiograms with Self- and Weakly-Supervised Learning [0.8672882547905405]
狭義の心エコービデオから一貫した左室(LV)セグメンテーションを行うビデオベースネットワークであるSimLVSegを開発した。
SimLVSegは、時間的マスキングによる自己教師付き事前トレーニングと、スパースアノテーションからのLVセグメンテーションに適した弱い教師付き学習で構成されている。
我々は、SimLVSegが、最大の2D+時間心エコー画像データセットで93.32%のダイススコアを達成して、最先端のソリューションをいかに優れているかを実証する。
論文 参考訳(メタデータ) (2023-09-30T18:13:41Z) - Echocardiography Segmentation Using Neural ODE-based Diffeomorphic
Registration Field [0.0]
本稿ではニューラル常微分方程式(ニューラルODE)を用いた新しい拡散画像登録法を提案する。
提案手法であるEcho-ODEでは,従来の最先端技術と比較して,いくつかの改良が加えられている。
その結果,本手法は過去の最先端技術よりも多面的に優れていることがわかった。
論文 参考訳(メタデータ) (2023-06-16T08:37:27Z) - Cardiac Adipose Tissue Segmentation via Image-Level Annotations [8.705311618392368]
我々は,ヒト心基質のCT画像に画像レベルのアノテーションを用いた心脂肪組織分画のための2段階の深層学習フレームワークを開発した。
本研究は, 自動組織解析の需要と高品質な画素アノテーションの欠如とのギャップを埋めるものである。
論文 参考訳(メタデータ) (2022-06-09T02:55:35Z) - Nuclei Segmentation with Point Annotations from Pathology Images via
Self-Supervised Learning and Co-Training [44.13451004973818]
核分割のための弱い教師付き学習法を提案する。
粗いピクセルレベルのラベルは、ボロノイ図に基づく点アノテーションから導かれる。
病理画像の核分割に適した自己教師付き視覚表現学習法を提案する。
論文 参考訳(メタデータ) (2022-02-16T17:08:44Z) - Echocardiography Segmentation with Enforced Temporal Consistency [10.652677452009627]
本研究では,2次元以上の長軸心形態を学習するための枠組みを提案する。
心臓の不整合の同定と補正は、生理的に解釈可能な心臓形状の埋め込みを学ぶために訓練された拘束されたオートエンコーダに依存している。
論文 参考訳(メタデータ) (2021-12-03T16:09:32Z) - SQUID: Deep Feature In-Painting for Unsupervised Anomaly Detection [76.01333073259677]
無線画像からの異常検出のための空間認識型メモリキューを提案する(略してSQUID)。
SQUIDは, 微細な解剖学的構造を逐次パターンに分類でき, 推測では画像中の異常(見えない/修正されたパターン)を識別できる。
論文 参考訳(メタデータ) (2021-11-26T13:47:34Z) - Interactive Segmentation for COVID-19 Infection Quantification on
Longitudinal CT scans [40.721386089781895]
病状進行と治療に対する反応を正確に評価するためには,複数の時点にまたがる患者のCTスキャンの連続的セグメンテーションが不可欠である。
既存の医用画像の自動および対話的セグメンテーションモデルでは、単一の時点からのデータのみを使用する(静的)。
本稿では,過去の情報をすべて活用し,フォローアップスキャンのセグメンテーションを改良する,インタラクティブセグメンテーションのための新しい単一ネットワークモデルを提案する。
論文 参考訳(メタデータ) (2021-10-03T08:06:38Z) - Left Ventricle Contouring in Cardiac Images Based on Deep Reinforcement
Learning [0.12891210250935145]
本稿では,エージェント強化学習に基づく医用画像のインタラクティブセグメンテーション手法を提案する。
我々は,ある順序で対象輪郭を描画する動的過程を,深い強化学習法に基づくマルコフ決定過程(MDP)としてモデル化する。
実験の結果, 少数の医用画像データセットにおいて, 左室のセグメンテーション効果は良好であった。
論文 参考訳(メタデータ) (2021-06-08T06:30:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。