論文の概要: CATSplat: Context-Aware Transformer with Spatial Guidance for Generalizable 3D Gaussian Splatting from A Single-View Image
- arxiv url: http://arxiv.org/abs/2412.12906v1
- Date: Tue, 17 Dec 2024 13:32:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-18 13:58:28.715466
- Title: CATSplat: Context-Aware Transformer with Spatial Guidance for Generalizable 3D Gaussian Splatting from A Single-View Image
- Title(参考訳): CATSplat:一視点画像からの一般化可能な3次元ガウス平滑化のための空間誘導型コンテキスト認識変換器
- Authors: Wonseok Roh, Hwanhee Jung, Jong Wook Kim, Seunggwan Lee, Innfarn Yoo, Andreas Lugmayr, Seunggeun Chi, Karthik Ramani, Sangpil Kim,
- Abstract要約: 単視点3Dシーン再構成のための新しい一般化可能なトランスフォーマーベースのフレームワークであるCATSplatを紹介する。
シーン固有のコンテキストの詳細をテキスト埋め込みからクロスアテンションに組み込むことで、コンテキスト認識の再構築の道を開く。
大規模データセットを用いた実験により, 単視点3次元シーン再構成におけるCATSplatの最先端性能が実証された。
- 参考スコア(独自算出の注目度): 18.445769892372528
- License:
- Abstract: Recently, generalizable feed-forward methods based on 3D Gaussian Splatting have gained significant attention for their potential to reconstruct 3D scenes using finite resources. These approaches create a 3D radiance field, parameterized by per-pixel 3D Gaussian primitives, from just a few images in a single forward pass. However, unlike multi-view methods that benefit from cross-view correspondences, 3D scene reconstruction with a single-view image remains an underexplored area. In this work, we introduce CATSplat, a novel generalizable transformer-based framework designed to break through the inherent constraints in monocular settings. First, we propose leveraging textual guidance from a visual-language model to complement insufficient information from a single image. By incorporating scene-specific contextual details from text embeddings through cross-attention, we pave the way for context-aware 3D scene reconstruction beyond relying solely on visual cues. Moreover, we advocate utilizing spatial guidance from 3D point features toward comprehensive geometric understanding under single-view settings. With 3D priors, image features can capture rich structural insights for predicting 3D Gaussians without multi-view techniques. Extensive experiments on large-scale datasets demonstrate the state-of-the-art performance of CATSplat in single-view 3D scene reconstruction with high-quality novel view synthesis.
- Abstract(参考訳): 近年, 有限資源を用いて3次元シーンを再構成する可能性について, 3次元ガウススプラッティングに基づく一般化可能なフィードフォワード法が注目されている。
これらのアプローチは、画素ごとの3Dガウスプリミティブによってパラメータ化される3Dラディアンスフィールドを、1つのフォワードパスでわずか数枚の画像から生成する。
しかし、クロスビュー対応の恩恵を受けるマルチビュー手法とは異なり、シングルビュー画像を用いた3次元シーン再構成は未探索領域のままである。
そこで本研究では,モノクラーセッティングに固有の制約を突破するように設計された,新しい一般化可能なトランスフォーマーベースのフレームワークであるCATSplatを紹介する。
まず,1つの画像から不十分な情報を補うために,視覚言語モデルからのテキストガイダンスを活用することを提案する。
テキスト埋め込みからクロスアテンションを通して、シーン固有のコンテキストの詳細を組み込むことで、視覚的手がかりのみに頼らずに、コンテキストを意識した3Dシーン再構築を実現することができる。
さらに,3次元的特徴からの空間的ガイダンスを,一視点設定下での包括的幾何学的理解に活用することを提唱する。
3Dプリエントでは、画像機能はマルチビュー技術なしで3Dガウスを予測するためのリッチな構造的洞察を捉えることができる。
大規模データセットに対する大規模な実験により,高品質な新規ビュー合成による単視点3次元シーン再構成におけるCATSplatの最先端性能が実証された。
関連論文リスト
- FreeSplat: Generalizable 3D Gaussian Splatting Towards Free-View Synthesis of Indoor Scenes [50.534213038479926]
FreeSplatは、長いシーケンス入力から自由視点合成まで、幾何学的に一貫した3Dシーンを再構築することができる。
ビュー数に関係なく、広いビュー範囲にわたる堅牢なビュー合成を実現するための、シンプルで効果的なフリービュートレーニング戦略を提案する。
論文 参考訳(メタデータ) (2024-05-28T08:40:14Z) - Denoising Diffusion via Image-Based Rendering [54.20828696348574]
実世界の3Dシーンの高速かつ詳細な再構築と生成を可能にする最初の拡散モデルを提案する。
まず、大きな3Dシーンを効率よく正確に表現できる新しいニューラルシーン表現であるIBプレーンを導入する。
第二に,2次元画像のみを用いて,この新たな3次元シーン表現の事前学習を行うためのデノイング拡散フレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-05T19:00:45Z) - SceneWiz3D: Towards Text-guided 3D Scene Composition [134.71933134180782]
既存のアプローチでは、大規模なテキスト・ツー・イメージモデルを使用して3D表現を最適化するか、オブジェクト中心のデータセット上で3Dジェネレータをトレーニングする。
テキストから高忠実度3Dシーンを合成する新しい手法であるSceneWiz3Dを紹介する。
論文 参考訳(メタデータ) (2023-12-13T18:59:30Z) - Single-view 3D Scene Reconstruction with High-fidelity Shape and Texture [47.44029968307207]
本研究では,物体の形状とテクスチャを同時に高忠実度に再現する新しい枠組みを提案する。
提案手法は,SSR(Single-view Neural implicit Shape and Radiance Field)表現を用いて,明示的な3次元形状制御とボリュームレンダリングの両方を活用する。
我々のフレームワークの特徴は、単一のビュー3D再構成モデルにレンダリング機能をシームレスに統合しながら、きめ細かいテクスチャメッシュを生成する能力である。
論文 参考訳(メタデータ) (2023-11-01T11:46:15Z) - Learning to Render Novel Views from Wide-Baseline Stereo Pairs [26.528667940013598]
本稿では,単一の広線ステレオ画像ペアのみを付与した新しいビュー合成手法を提案する。
スパース観測による新しいビュー合成への既存のアプローチは、誤った3次元形状の復元によって失敗する。
対象光線に対する画像特徴を組み立てるための,効率的な画像空間のエピポーラ線サンプリング手法を提案する。
論文 参考訳(メタデータ) (2023-04-17T17:40:52Z) - High-fidelity 3D GAN Inversion by Pseudo-multi-view Optimization [51.878078860524795]
フォトリアリスティック・ノベルビューを合成可能な高忠実度3次元生成対向ネットワーク(GAN)インバージョン・フレームワークを提案する。
提案手法は,1枚の画像から高忠実度3Dレンダリングを可能にし,AI生成3Dコンテンツの様々な応用に期待できる。
論文 参考訳(メタデータ) (2022-11-28T18:59:52Z) - Vision Transformer for NeRF-Based View Synthesis from a Single Input
Image [49.956005709863355]
本稿では,グローバルな特徴と局所的な特徴を両立させ,表現力のある3D表現を実現することを提案する。
新たなビューを合成するために,学習した3次元表現に条件付き多層パーセプトロン(MLP)ネットワークを訓練し,ボリュームレンダリングを行う。
提案手法は,1つの入力画像のみから新しいビューを描画し,複数のオブジェクトカテゴリを1つのモデルで一般化することができる。
論文 参考訳(メタデータ) (2022-07-12T17:52:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。