Enhancing Persona Classification in Dialogue Systems: A Graph Neural Network Approach
- URL: http://arxiv.org/abs/2412.13283v1
- Date: Tue, 17 Dec 2024 19:27:24 GMT
- Title: Enhancing Persona Classification in Dialogue Systems: A Graph Neural Network Approach
- Authors: Konstantin Zaitsev,
- Abstract summary: This study proposes a framework that combines text embeddings with Graph Neural Networks (GNNs) for effective persona classification.
Given the absence of dedicated persona classification datasets, we create a manually annotated dataset to facilitate model training and evaluation.
Our approach, in particular the integration of GNNs, significantly improves classification performance, especially with limited data.
- Score: 0.0
- License:
- Abstract: In recent years, Large Language Models (LLMs) gain considerable attention for their potential to enhance personalized experiences in virtual assistants and chatbots. A key area of interest is the integration of personas into LLMs to improve dialogue naturalness and user engagement. This study addresses the challenge of persona classification, a crucial component in dialogue understanding, by proposing a framework that combines text embeddings with Graph Neural Networks (GNNs) for effective persona classification. Given the absence of dedicated persona classification datasets, we create a manually annotated dataset to facilitate model training and evaluation. Our method involves extracting semantic features from persona statements using text embeddings and constructing a graph where nodes represent personas and edges capture their similarities. The GNN component uses this graph structure to propagate relevant information, thereby improving classification performance. Experimental results show that our approach, in particular the integration of GNNs, significantly improves classification performance, especially with limited data. Our contributions include the development of a persona classification framework and the creation of a dataset.
Related papers
- Large Language Model-based Augmentation for Imbalanced Node Classification on Text-Attributed Graphs [13.42259312243504]
Node classification on graphs often suffers from class imbalance, leading to biased predictions and significant risks in real-world applications.
We propose Large Language Model-based Augmentation on Text-Attributed Graphs (LA-TAG) to handle imbalanced node classification.
arXiv Detail & Related papers (2024-10-22T10:36:15Z) - Subgraph Clustering and Atom Learning for Improved Image Classification [4.499833362998488]
We present the Graph Sub-Graph Network (GSN), a novel hybrid image classification model merging the strengths of Convolutional Neural Networks (CNNs) for feature extraction and Graph Neural Networks (GNNs) for structural modeling.
GSN employs k-means clustering to group graph nodes into clusters, facilitating the creation of subgraphs.
These subgraphs are then utilized to learn representative atoms for dictionary learning, enabling the identification of sparse, class-distinguishable features.
arXiv Detail & Related papers (2024-07-20T06:32:00Z) - A Pure Transformer Pretraining Framework on Text-attributed Graphs [50.833130854272774]
We introduce a feature-centric pretraining perspective by treating graph structure as a prior.
Our framework, Graph Sequence Pretraining with Transformer (GSPT), samples node contexts through random walks.
GSPT can be easily adapted to both node classification and link prediction, demonstrating promising empirical success on various datasets.
arXiv Detail & Related papers (2024-06-19T22:30:08Z) - Similarity-based Neighbor Selection for Graph LLMs [43.176381523196426]
We introduce Similarity-based Neighbor Selection (SNS)
SNS improves the quality of selected neighbors, thereby improving graph representation and alleviating issues like over-squashing and heterophily.
As an inductive and training-free approach, SNS demonstrates superior generalization and scalability over traditional GNN methods.
arXiv Detail & Related papers (2024-02-06T05:29:05Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - ConGraT: Self-Supervised Contrastive Pretraining for Joint Graph and Text Embeddings [20.25180279903009]
We propose Contrastive Graph-Text pretraining (ConGraT) for jointly learning separate representations of texts and nodes in a text-attributed graph (TAG)
Our method trains a language model (LM) and a graph neural network (GNN) to align their representations in a common latent space using a batch-wise contrastive learning objective inspired by CLIP.
Experiments demonstrate that ConGraT outperforms baselines on various downstream tasks, including node and text category classification, link prediction, and language modeling.
arXiv Detail & Related papers (2023-05-23T17:53:30Z) - CADGE: Context-Aware Dialogue Generation Enhanced with Graph-Structured Knowledge Aggregation [25.56539617837482]
A novel context-aware graph-attention model (Context-aware GAT) is proposed.
It assimilates global features from relevant knowledge graphs through a context-enhanced knowledge aggregation mechanism.
Empirical results demonstrate that our framework outperforms conventional GNN-based language models in terms of performance.
arXiv Detail & Related papers (2023-05-10T16:31:35Z) - Local Augmentation for Graph Neural Networks [78.48812244668017]
We introduce the local augmentation, which enhances node features by its local subgraph structures.
Based on the local augmentation, we further design a novel framework: LA-GNN, which can apply to any GNN models in a plug-and-play manner.
arXiv Detail & Related papers (2021-09-08T18:10:08Z) - GraphFormers: GNN-nested Transformers for Representation Learning on
Textual Graph [53.70520466556453]
We propose GraphFormers, where layerwise GNN components are nested alongside the transformer blocks of language models.
With the proposed architecture, the text encoding and the graph aggregation are fused into an iterative workflow.
In addition, a progressive learning strategy is introduced, where the model is successively trained on manipulated data and original data to reinforce its capability of integrating information on graph.
arXiv Detail & Related papers (2021-05-06T12:20:41Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
We present two self-supervised tasks learning over raw text with the guidance from knowledge graphs.
Building upon entity-level masked language models, our first contribution is an entity masking scheme.
In contrast to existing paradigms, our approach uses knowledge graphs implicitly, only during pre-training.
arXiv Detail & Related papers (2020-04-29T14:22:42Z) - Mining Implicit Entity Preference from User-Item Interaction Data for
Knowledge Graph Completion via Adversarial Learning [82.46332224556257]
We propose a novel adversarial learning approach by leveraging user interaction data for the Knowledge Graph Completion task.
Our generator is isolated from user interaction data, and serves to improve the performance of the discriminator.
To discover implicit entity preference of users, we design an elaborate collaborative learning algorithms based on graph neural networks.
arXiv Detail & Related papers (2020-03-28T05:47:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.